
Proc. 10th International Conference on Computer Communications and Networks, Oct. 15-17, 2001, pp. 418-423.

A Fixed-Delay Broadcasting Protocol for Video-on-Demand

Jehan-François Pâris1
Department of Computer Science

University of Houston
Houston, TX 77204-3475
paris@cs.uh.edu

Abstract—Broadcasting protocols reduce the cost of video-on-
demand services by distributing more efficiently videos that are
likely to be simultaneously watched by many viewers. Rather
than answering individual customer requests, they broadcast the
contents of each video according to a fixed schedule.

We present a fixed-delay pagoda broadcasting protocol that
requires all users to wait for a small fixed delay before watching
the video they have selected. The protocol uses this delay to
reduce the bandwidth required to transmit the first minutes of
each video. As a result, our protocol provides the lowest waiting
times of all protocols using segments of equal duration and
channels of equal bandwidth. In addition, its performance is not
very far from the theoretical minimum. We also show how to
modify our protocol to restrict the set-top box receiving
bandwidth to two times the video consumption rate.

I. INTRODUCTION

The main reason for the lack of success of video-on-
demand (VOD) is its high cost relative to its two more
entrenched rivals, namely, pay-per-view and videocassette
rentals..1

This situation has led to numerous proposals aiming at
reducing the cost of providing video-on-demand (VOD)
services. Many, if not most, of these proposals have focused
on finding better ways to distribute the top ten or twenty so-
called “hot” videos in a more eff icient fashion. Broadcasting
protocols [2] were introduced for that purpose. Rather than
answering individual customer requests, they distribute the
contents of each video according to a fixed schedule that is
not affected by the presence–or the absence–of requests for
that video. Hence the number of viewers watching a given
video does not affect their bandwidth requirements.

Broadcasting protocols have two major advantages. First
they scale up extremely well . Second they have very modest
bandwidth requirements: the best broadcasting protocols
require less than six times the video consumption rate to
ensure that no customer will wait more than 42 seconds for a
two-hour video [9].

We present a broadcasting protocol that has even lower
bandwidth requirements. Like the polyharmonic broad-
casting protocol [8] and the GEBB protocol [6], our fixed-
delay pagoda broadcasting (FDPB) protocol requires all
users to wait for a small fixed delay before watching the

1 Supported in part by the Texas Advanced Research Program under grant
003652-0124-1999 and the National Science Foundation under grant CCR-
9988390.

video they have selected. This small delay allows for a much
more eff icient transfer of the first few minutes of the video.
Unlike polyharmonic broadcasting and GEBB, our FDPB
protocol uses fixed-size segments and assigns them to a few
fixed-bandwidth channels. It is thus much easier to
implement than its two predecessors are.

We compared the bandwidth requirements of the FDPB
protocol with those of pagoda broadcasting and polyharmonic
broadcasting. We found that maximum customer delays for a
given number of channels are typicall y 40 to 50 percent less
than those achieved by the new pagoda broadcasting
protocol.

We also present a modified version of the FDPB protocol
that restricts the STB receiving bandwidth to two times the
video consumption rate and show that it requires less server
bandwidth than the skyscraper broadcasting protocol.

II . PREVIOUS WORK

The simplest video broadcasting protocol is staggered
broadcasting [11]. A video broadcast under that protocol is
continuously retransmitted over k distinct video channels at
equal time intervals. The approach does not necessitate any
significant modification to the set-top box (STB) but requires
a fairly large number of channels per video to achieve a
reasonable waiting time.

The past five years have seen the development of many
more eff icient broadcasting protocols [2]. Most of these
protocols assume that the client set-top box has enough local
storage to store at least one half of each video being watched.
We can subdivide these protocols into two groups. The
protocols in the first group are based on Viswanathan and
Imielinski's pyramid broadcasting protocol [10]. They
include Aggarwal, Wolf and Yu’s permutation-based
pyramid broadcasting protocol [1], Hua and Sheu’s
skyscraper broadcasting protocol [3] and Juhn and Tseng's
fast broadcasting protocol [5].

While these protocols require less than half the bandwidth
of staggered broadcasting to guarantee the same maximum
waiting time, they cannot match the performance of the
protocols based on the harmonic broadcasting (HB) protocol
[4, 8]. Harmonic protocols divide each video into n segments
of duration d = D/n where D is the duration of the video.
With the original harmonic broadcasting protocol [4], each

 419

Slot 0 1 2 3 4 5

Channel 1 S1 S1 S1 S1 S1 S1

Channel 2 S2 S4 S2 S5 S2 S4

Channel 3 S3 S6 S8 S3 S7 S9

Figure 1. How pagoda broadcasting maps nine segments
 into three channels.

segment Si is broadcast repeatedly on its own stream whose
bandwidth is equal to b/i, where b is the consumption rate of
the video).

The customer must receive all streams at once, which
means that the server and the customer STB must support a
bandwidth of

)(
1

nbH
i

b
B

n

i
HB == ∑

=

for each video, where H(n) is the harmonic number of n.
Unfortunately, harmonic broadcasting does not always

deli ver all data on time [8], but two variants have been
developed which solve that problem without imposing much
additional waiting time on the customer [8].

Like harmonic broadcasting, polyharmonic broadcasting
(PHB) [8] breaks each video into n segments of equal
duration d. It requires however all customers to wait for a
fixed time interval w = md where m is some integer m ≥ 1 and
uses this time interval to start downloading the n segments of
the video. As a result, segment Si needs only to be
transmitted once every diw)1(−+ time units. The band-
width required to distribute the video is thus equal to

)1()1(
11

−−−+=
−+

= ∑
=

mHmnH
im

b
B

n

i
PHB .

Polyharmonic broadcasting requires m times more
segments than harmonic broadcasting to achieve the same
maximum customer waiting time. Its bandwidth require-
ments are lower than those of harmonic broadcasting as long
as m > 1.

The multitude of streams that all harmonic protocols
require complicates the task of the STB's and the servers.
Like HB, pagoda broadcasting (PB) [9] uses fixed-size seg-
ments. It assigns to each video k video channels whose
bandwidths are all equal to the video consumption rate and
partitions these k channels into slots of equal duration.

Figure 1 shows how PB can pack nine segments into three
channels. Each channel is partitioned into slots, whose
duration is equal to the duration of a segment. Channel 1
continuously repeats segment S1 to ensure that it is repeated
once every slot. Channel 2 broadcasts segment S2 once every
two slots and segments S4 and S5 once every four slots. Even
though it was not stated in the original description of the PB
protocol, channel 2 is subdivided into two subchannels of
equal bandwidth using time-division multiplexing. The first
of these subchannels, let us call it subchannel 0, contains all
even slots of channel 1 and uses them to broadcast segment
S2 at half the channel bandwidth b. The second subchannel

Channel Subchannels Segments
1 – S1

0 S2 2

1 S4 and S5

0 S3

1 S6 and S7

3

2 S8 and S9

0 S10 to S14 4

1 S20 to S29

0 S15 to S19

1 S30 to S39

5

2 S40 to S49

Figure 2. How pagoda broadcasting maps 49 segments into 5 channels

(subchannel 1) contains all odd slots of channel 1 and uses
them to broadcast segments S4 and S5. Channel 3 is similarly
subdivided into three subchannels with subchannel 0
broadcasting segment S3, subchannel 1 broadcasting
segments S6 and S7, and subchannel 2 broadcasting segments
S8 and S9. As Figure 2 shows the same arrangement is
repeated for all subsequent channels. All odd-numbered
channels, but channel 1, are subdivided into three
subchannels of equal bandwidth while all even numbered
channels are similarly subdivided into two subchannels. As a
result, pagoda broadcasting can pack 49 segments into 5
channels, which means that the segment size will be equal to
1/49 of the duration of the video. Hence no client would ever
have to wait more than two minutes and half for a two-hour
video. A more recent version of the protocol, the new
pagoda broadcasting protocol uses more complex segment to
stream mappings and packs more segments into the same
number of data streams to achieve even lower maximum
waiting times [9].

The GEBB protocol [6] improves upon the polyharmonic
protocol by using channels of equal bandwidth b' < b and
increasing the size of successive segments rather than
decreasing the channel bandwidths. As a result, these
channels are much easier to multiplex.

II I. THE FIXED-DELAY PAGODA BROADCASTING
PROTOCOL

The fixed-delay pagoda broadcasting (FDPB) protocol
differs from previous pagoda protocols in two fashions. First,
it implements a fixed-delay poli cy that results in lower band-
width requirements than other pagoda protocols. Second, it
uses a much simpler segment-to-channel mapping.

We will consider a video of duration D to be broadcast
over k channels Cj with 1 ≤ j ≤ k. The bandwidths of these k
channels will all be equal to the video consumption rate b.
The total bandwidth required by the protocol will t hus be
equal to kb. Like other pagoda protocols, the FDPB protocol
will partition each video into n equal-size segments of

 420

duration d = D/n. These n segments will be broadcast at
different frequencies over the k channels, each segment
transmission occupying a slot of duration d.

Unlike previous pagoda protocols, the FDPB protocol
requires all customers wanting to watch a video to wait for a
fixed time interval w = md, where m is some integer m ≥ 1.
The protocol will use this delay to stretch the reception of the
n segments of the video over a longer time interval. Previous
pagoda protocols required segment Si to be repeated at least
once every i slots to ensure the continuity of the video. With
the FDBP protocol, segment S1 needs to be transmitted at
least once every m slots to be always received before the cus-
tomer starts watching the video. More generall y, segment Si
will need to be transmitted at least once every 1−+ im slots.

As shown on Figure 3, the FDPB protocol partitions each
channel Cj into sj subchannels in such a way that slot j of
channel Cj belongs to its subchannel j (mod sj). Each
subchannel has thus 1/sj of the slots and 1/sj of the bandwidth
of channel Cj

The FDPB protocol also differs from previous pagoda
protocols in the way it maps segments to channels. Unlike
previous pagoda protocols, the FDBP protocol maps
segments into subchannels in a strict sequential fashion.
Thus the first segments of the video are mapped into
subchannel 0 of channel C1, the next segments into
subchannel 1 of the same channel and so on until all s1
subchannels of channel C1 have been used. The process
repeats itself for the subchannels of channels C2 to Ck. As a
result, the whole segment-to-channel mapping can be derived
from its k + 1 parameters, namely
a) the number k of channels allocated to the video,
b) the ratio m between the customer waiting time and the

segment duration d, and
c) the numbers s1, s2, …sk of subchannels for each of the k

channels.
We quickly found that the optimal number of subchannels

for a given channel Cj depended on the periodicity at which
the segments assigned to that channel had to be retransmitted.
Let be the first segment assigned to channel Cj. As we saw
earlier, segment Si needs to be rebroadcast at least once every

1−+ im slots. By trial and error, we found that the best
mappings were always achieved when channel Cj was
partitioned into 1−+ im subchannels. Hence, it is con-
venient—but not necessary for the correctness of the
protocol—to assume that the ratio m between the duration of
the waiting period w and the duration d of a segment is a
perfect square.

Consider for instance the case when m = 9. As Figure 3
indicates, channel C1 will be partitioned into 3 subchannels.
The first segment to be broadcast is segment S1. Since m = 9,
S1 needs to be repeated at least once every 9 slots. Let us
assign it to subchannel 0. Since subchannel 0 has one third of
the slots of channel C1, we can map up to three segments into
it while ensuring that each of these three segments will be
repeated once every 9 slots. These three segments will be
segments S1 to S3.

Slot 0 1 2 3 4 5
Subchannel 0 ✔ ✔

Subchannel 1 ✔ ✔

Subchannel 2 ✔ ✔

Figure 3. A channel partitioned into 3 subchannels

Subchannel 0 1 2
First Segment S1 S4 S8

Last Segment S3 S7 S12

Figure 4. The first channel for m=9.

Subchannel 0 1 2 3 4
First Segment S13 S17 S22 S28 S35

Last Segment S16 S21 S27 S34 S42

Figure 5. The second channel for m=9.

The first segment to be transmitted by subchannel 1 will be
segment S4, which needs to be repeated at least once every
9 + 4 – 1 = 12 slots. As a result, we will map four segments
into subchannel 1. The first segment to be transmitted by
subchannel 2 will t hus be segment S8. Since S8 needs to be
repeated every 9 + 8 – 1 = 16 slots, we will map five
segments into subchannel 2. As a result, channel C1 will
transmit a total of twelve segments.
The first segment to be broadcast by channel C2 is segment
S13, which needs to be repeated at least once every 9 + 13 –
 1 = 21 slots. Since 20 is not a square and the closest square,
25 = 52, channel C2 will be partitioned into 5 subchannels.
As Figure 5 shows, subchannel 0 will continuously retransmit
segments S13 to S16 ensuring that each segment is repeated
exactly once every 20 slots. Subchannel 1 will t ransmit
segments S17 to S21 ensuring that segment S17 is repeated at
least every 9 + 17 – 1 = 25 slots. Subchannel 2 will t ransmit
segments S22 to S27 to ensure that segment S22 is repeated at
least every 30 slots and subchannel 3 will t ransmit segments
S28 to S34 and subchannel 3 will t ransmit segments S28 to S34
ensuring that segment S28 is repeated at least every 36 slots.
Finall y subchannel 4 will repeat segments S35 to S42 ensuring
that segment S35 is repeated at least every 43 slots. Hence,
channel C2 will broadcast 30 segments.

Table 1 summarizes the segment-to-channel mappings for
up to seven channels. Allocating six channels to a video
allows partitioning it into 2046 segments. The waiting time
for the video will t hen be equal to 9/2046 of its duration, that
is, less than 32 seconds for a two-hour video.

This is much better than the maximum waiting time of 44
seconds that can be achieved by the new pagoda broadcasting
with the same number of channels. Broadcasting the same
video over seven channels would reduce the waiting time to
less than 12 seconds instead of 17 seconds for the new
pagoda broadcasting protocol.

 421

Table 1. Summary of the mappings for m = 9

 Channel Number of
Subchannels

First
Segment

Last
Segment

C1 3 S1 S12
C2 5 S13 S42
C3 7 S43 S116
C4 11 S117 S292
C5 17 S293 S770
C6 28 S771 S2046
C7 45 S2047 S5477

Table 2. Summary of the mappings for m = 100

Channel Number of
Subchannels

First
Segment

Last
Segment

C1 10 S1 S156
C2 16 S157 S565
C3 26 S566 S1650
C4 42 S1651 S4563
C5 68 S4564 S12418
C6 112 S12419 S33684
C7 184 S33685 S91321

We could even reduce this delay by increasing m. The

only problem with this approach is that this would partition
each video into larger and larger numbers of smaller and
smaller segments. As shown in Table 2, a FDPB protocol
with m = 100 could pack 33,783 segments into six channels.
The waiting time for the same two-hour video would then be
given by 7200×100/33,783 = 21.4 seconds, that is less than
half of the maximum waiting time for a new pagoda protocol
with the same number of channels. Partitioning the video
into 33,783 segments implies that each segment would now
last 7,200/33,783 = 0.213 second. Assuming an average
bandwidth of 5Megabits/second, this means that each
segment would contain around 130 kilobytes of data. This
still remains a reasonable record size and would not affect the
performance of the disk subsystem of the video server.

We can derive a lower bound for the waiting time w of the
FDBP protocol by computing the limit of this waiting time
when m goes to infinity and k remains constant. Consider a
video of duration D and assume that all customers are willi ng
to wait w time units between the time they have ordered the
video and the time they can start watching it. Let b represent
the video consumption rate and ∆t a small time interval at a
location t within the video. Assuming that each customer
STB starts downloading video data from the moment the
video is ordered, the contents of this time interval will have to
be broadcast at a minimum bandwidth)/(wtb + where b is
the video consumption rate.

Passing to the limit when ∆t goes to 0, we see that the
minimum bandwidth required to transmit the video is be
given by

w

wD
bdt

wt

b
B

D +=
+

= ∫ log
0min (1)

From this equation, we can also derive the minimum
waiting time that can be achieved when the broadcasting
bandwidth is equal to k times the video consumption rate

1min −

=
ke

D
w (2)

Hence the minimum waiting time that can be achieved with a
bandwidth equal to six times the video consumption rate is
given by

 s9.17
1

7200
6min =

−
=

e
w (3)

Figure 6 shows the waiting times achieved by the FDBP
for selected values of m between 4 and 100. All bandwidths
are expressed as multiples of the video consumption rate b
and all waiting times are expressed as fractions of the video
duration D. The dotted curve at the top represents the
maximum waiting times achieved by the new pagoda
protocol while the tick solid curve at the bottom represents
the lower bound of equation (2).

As one can see, the FDPB protocol achieves lower
maximum waiting times than new pagoda broadcasting at
every bandwidth. In particular, with m = 100, a bandwidth
equal to five times the video consumption suff ices to bring
the waiting time under 0.81 percent of the duration of the
video, that is, less than one minute for a two-hour video.

Our FDPB protocol does not have the same advantage over
the polyharmonic broadcasting protocol and the GAB
protocol. As shown on Figure 7, the polyharmonic
broadcasting protocol with m = 16 (that is, w = 16d) provides
waiting times that are very close to the lower bounds derived
from equation (1). This is not the case for the FDPB
protocol, which performs significantly worse. The superior
performance of the polyharmonic broadcasting comes
however at a price: achieving a waiting time of 20 seconds
for a two-hour video requires partitioning the video into
5,760 segments and broadcasting each of these segments on a
separate channel.

IV. RESTRICTING THE CLIENT BANDWIDTH

Like most other broadcasting protocols, the FDBP protocol
assumes that the set-top box (STB) can and will
simultaneously receive data from the k channels on which the
various segments of the video are broadcast. This
requirement complicates the design of the STB and increases
its cost.

One possible approach to this problem is to restrict the
STB receiving bandwidth to a given multiple k' < k of the
video consumption rate. For instance, the skyscraper
broadcasting protocol [3] never requires the customer STB to
receive data from more than two channels at the same time.

This approach has a major drawback, namely a very
significant increase in the server bandwidth required to

 422

0

0.01

0.02

0.03

0.04

0.05

3 4 5 6 7

Bandwidth (channels)

 W
ai

ti
n

g
 T

im
e/

V
id

eo
 D

u
ra

ti
o

n

New Pagoda
w = 4d

w = 9d

FDPB m=16
w = 25d

w = 36d
w = 49d

w = 64d

w = 81d
w = 100d

Limit

Figure 6. Waiting times achieved by the FDPB protocol for different values of m.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

3 4 5 6 7

Bandwidth (channels)

W
ai

ti
n

g
 T

im
e/

V
id

eo
 D

u
ra

ti
o

n

New Pagoda
FDPB m=16

PHB m =16
Limit

Figure 7. How the FDPB protocol compares to new pagoda broadcasting protocol and polyharmonic broadcasting

distribute the videos. Hence, the potential savings in STB
costs achieved by skyscraper broadcasting would require
bigger, more expensive video servers and a costlier
network infrastructure.

We propose here a less radical implementation of the
same concept, namely, reducing the client bandwidth
requirements of an existing protocol to two or three
concurrent channels. As we will see, this approach will
result in very moderate increases of the server bandwidth.
Consider the case of a FDPB protocol with m = 100 that
restricts the server client bandwidth to 2 channels. As
shown in Table 3, the segment-to-subchannel mappings of
the two first channels are unchanged. The first mappings
to be affected are those of channel C3 as the STB must now
wait until it has received all data from the first channel

before starting to receive data from the first channel. The last
segment broadcast by the first channel is segment S156. It is
broadcast along with segments S134 to S155 by subchannel 0 once
every 230 slots because their broadcasting period must be a
multiple of the number of subchannels in the first channel. The
first segment broadcast by channel C3 is segment S566.
Recalli ng that the customer waiting time is equal to 100 slots,
we see that segment S566 must now be broadcast at least once
every 566 + 99– 230 =435 slots. Similarly segment S567 has
now to be broadcast at least once every 567 + 99– 230 =436
slots and so on. As a result, channel C3 will now be partitioned
into ≈435 21 subchannels and will broadcast segments S566 to
S1268.

Figure 8 presents the waiting times achieved by a FDPB
protocol restricting the STB bandwidth to two channels (k’ = 2)

 423

Table 3. Summary of the mappings for a FDBP limiting the STB
bandwidth to two channels (m = 100)

Channel Number of
Subchannels

First
Segment

Last
Segment

C1 10 S1 S156
C2 16 S157 S565
C3 21 S566 S1268
C4 27 S1269 S2486
C5 36 S2487 S4617
C6 47 S4618 S8298
C7 62 S8299 S14595

and compares them to those achieved by skyscraper broad-
casting and new pagoda broadcasting. As before, all
bandwidths are expressed as multiples of the video
consumption rate b and all waiting times are expressed as
fractions of the video duration D. We can see that our
protocol performs much better than skyscraper
broadcasting but significantly worse than the new pagoda
broadcasting protocol. Given a server bandwidth equal to
six times the video consumption rate, skyscraper broad-
casting can only achieve a maximum waiting time of 4
minutes and 27 seconds for a two-hour video. Our FDPB
protocol can reduce this delay to 87 seconds, that is,
slightly more than twice the 42 seconds achieved by the
new pagoda broadcasting protocol. Both protocols
perform significantly worse than the unrestricted version
of the FDPB, which can achieve a waiting time of 21
seconds with the same server bandwidth.

Two factors can explain the large gap between the
performances of skyscraper broadcasting and the restricted
version of our protocol. First, the FDPB broadcasting
protocol uses much more eff icient segment-to-slot
mappings than skyscraper broadcasting for its first two
channels. As these mappings remain unchanged when the
STB bandwidth gets limited to two times the video
consumption rate, this gives a definiti ve edge to our
protocol. Second, the skyscraper broadcasting has the
objective of reducing both the STB bandwidth and the size
of the STB buffer. These were both important objectives
when the skyscraper broadcasting was proposed in 1997,
as disk drives capable of storing large amounts of video
data were still expensive. Nowadays, it is virtuall y
impossible to buy a new disk drive that cannot contain at
least four hours of video data. Hence reducing the size of
the STB buffer is not as important today as it was then.

V. CONCLUSION

We have presented a new pagoda broadcasting protocol
for VOD that requires all customers to wait for the same
amount of time before watching the video they have
ordered. Our fixed-delay pagoda broadcasting protocol
(FDBP) uses this delay to reduce the bandwidth required to
transmit the first minutes of each video. As a result, it

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

3 4 5 6 7
Bandwidth (channels)

W
ai

ti
n

g
 T

im
e/

V
id

eo
 D

u
ra

ti
o

n
n

Skyscraper
New Pagoda
FDPB m=100 k'=2
FDPB m=100

Figure 8. How a FDPB protocol restricting STB bandwidth to two channels
compares to the new pagoda broadcasting protocol and skyscraper
broadcasting.

provides the lowest waiting times of all protocols using
segments of equal duration and channels of equal bandwidth. In
addition, its performance is not very far from the theoretical
minimum. We have also shown how we can modify our
protocol to restrict the STB receiving bandwidth to two times
the video consumption rate.

More work is needed to improve the performance of the
protocol when it is used to transmit variable bit-rate video using
a constant transmission rate [7] and adjust the transmission
frequencies of the segments that always arrive one or more slots
ahead of time because of the constant transmission rate.

REFERENCES

[1] Aggarwal, C. C., J. L. Wolf, and P. S. Yu, “A permutation-based pyramid
broadcasting scheme for video-on-demand systems,” Proc. ICMCS Conf.,
pp. 118–126, June 1996.

[2] Carter, S. W., D. E. Long and J.-F. Pâris. “Video-on-demand
broadcasting protocols,” In Multimedia Communications: Directions and
Innovations (J. D. Gibson, Ed.), Academic Press, San Diego, 2000, pp.
179–189.

[3] Hua, K. A., and S. Sheu, “Skyscraper broadcasting: a new broadcasting
scheme for metropolitan video-on-demand systems,” Proc. SIGCOMM 97
Conf., pp. 89–100, Sep. 1997.

[4] Juhn, L., and L. Tseng, “Harmonic broadcasting protocols for video-on-
demand service,” IEEE Trans. on Broadcasting, 43:268–271, Sep. 1997.

[5] Juhn, L., and L. Tseng, “Fast data broadcasting and receiving scheme for
popular video service,” IEEE Trans. on Broadcasting, 44(1):100–105,
Mar. 1998.

[6] Hu, A., I. Nikolaidis, and P. van Beek. “On the design of efficient video-
on-demand broadcast schedules,” Proc. 7th Int. MASCOTS Symp., pp. 262–
269, Oct. 1999.

[7] McManus, J. M., and K. W. Ross, “Video-on-demand over ATM: constant
rate transmission and transport,” IEEE Journal on Selected Areas in
Communication, 14(6):1087–1098, 1996.

[8] Pâris, J.-F., S. W. Carter and D. D. E. Long, “A low bandwidth
broadcasting protocol for video on demand,” Proc. 7th ICCCN Conf., pp.
690–697 Oct. 1998.

[9] Pâris, J.-F. “A simple low-bandwidth broadcasting protocol for video on
demand," Proc. 87th Int. ICCCN Conf., pp. 690–697, Oct. 1999.

[10] Viswanathan, S., and T. Imielinski, “Metropoli tan area video-on-demand
service using pyramid broadcasting,” ACM Multimedia Systems Journal,
4(4):197–208, Aug. 1996.

[11] Wong, J. W., “Broadcast delivery,” Proc. IEEE, 76(12):1566–1577, Dec.
1988.

