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Abstract—Broadcasting protocols reduce the cost of video-on-
demand services by distributing more efficiently videos that are 
likely to be simultaneously watched by many viewers.  Rather 
than answering individual customer requests, they broadcast the 
contents of each video according to a fixed schedule. 

We present a fixed-delay pagoda broadcasting protocol that 
requires all users to wait for a small fixed delay before watching 
the video they have selected. The protocol uses this delay to 
reduce the bandwidth required to transmit the first minutes of 
each video.  As a result, our protocol provides the lowest waiting 
times of all protocols using segments of equal duration and 
channels of equal bandwidth.  In addition, its performance is not 
very far from the theoretical minimum.  We also show how to 
modify our protocol to restrict the set-top box receiving 
bandwidth to two times the video consumption rate. 

I. INTRODUCTION 

The main reason for the lack of success of video-on-
demand (VOD) is its high cost relative to its two more 
entrenched rivals, namely, pay-per-view and videocassette 
rentals..1 

This situation has led to numerous proposals aiming at 
reducing the cost of providing video-on-demand (VOD) 
services.  Many, if not most, of these proposals have focused 
on finding better ways to distribute the top ten or twenty so-
called “hot” videos in a more eff icient fashion.  Broadcasting 
protocols [2] were introduced for that purpose.  Rather than 
answering individual customer requests, they distribute the 
contents of each video according to a fixed schedule that is 
not affected by the presence–or the absence–of requests for 
that video.  Hence the number of viewers watching a given 
video does not affect their bandwidth requirements.   

Broadcasting protocols have two major advantages.  First 
they scale up extremely well .  Second they have very modest 
bandwidth requirements: the best broadcasting protocols 
require less than six times the video consumption rate to 
ensure that no customer will wait more than 42 seconds for a 
two-hour video [9].   

We present a broadcasting protocol that has even lower 
bandwidth requirements.  Like the polyharmonic broad-
casting protocol [8] and the GEBB protocol [6], our fixed-
delay pagoda broadcasting (FDPB) protocol requires all 
users to wait for a small fixed delay before watching the 
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video they have selected.  This small delay allows for a much 
more eff icient transfer of the first few minutes of the video.  
Unlike polyharmonic broadcasting and GEBB, our FDPB 
protocol uses fixed-size segments and assigns them to a few 
fixed-bandwidth channels.  It is thus much easier to 
implement than its two predecessors are. 

We compared the bandwidth requirements of the FDPB 
protocol with those of pagoda broadcasting and polyharmonic 
broadcasting.  We found that maximum customer delays for a 
given number of channels are typicall y 40 to 50 percent less 
than those achieved by the new pagoda broadcasting 
protocol.  

We also present a modified version of the FDPB protocol 
that restricts the STB receiving bandwidth to two times the 
video consumption rate and show that it requires less server 
bandwidth than the skyscraper broadcasting protocol. 

II . PREVIOUS WORK 

The simplest video broadcasting protocol is staggered 
broadcasting [11].  A video broadcast under that protocol is 
continuously retransmitted over k distinct video channels at 
equal time intervals.  The approach does not necessitate any 
significant modification to the set-top box (STB) but requires 
a fairly large number of channels per video to achieve a 
reasonable waiting time.   

The past five years have seen the development of many 
more eff icient broadcasting protocols [2].  Most of these 
protocols assume that the client set-top box has enough local 
storage to store at least one half of each video being watched.  
We can subdivide these protocols into two groups.  The 
protocols in the first group are based on Viswanathan and 
Imielinski's pyramid broadcasting protocol [10].  They 
include Aggarwal, Wolf and Yu’s permutation-based 
pyramid broadcasting protocol [1], Hua and Sheu’s 
skyscraper broadcasting protocol [3] and Juhn and Tseng's 
fast broadcasting protocol [5]. 

While these protocols require less than half the bandwidth 
of staggered broadcasting to guarantee the same maximum 
waiting time, they cannot match the performance of the 
protocols based on the harmonic broadcasting (HB) protocol 
[4, 8].  Harmonic protocols divide each video into n segments 
of duration d = D/n where D is the duration of the video.  
With the original harmonic broadcasting protocol [4], each 
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Slot 0 1 2 3 4 5 

Channel 1 S1 S1 S1 S1 S1 S1 

Channel 2 S2 S4 S2 S5 S2 S4 

Channel 3 S3 S6 S8 S3 S7 S9 

Figure 1. How pagoda broadcasting maps nine segments 
 into three channels. 

segment Si is broadcast repeatedly on its own stream whose 
bandwidth is equal to b/i, where b is the consumption rate of 
the video). 

The customer must receive all streams at once, which 
means that the server and the customer STB must support a 
bandwidth of 
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for each video, where H(n) is the harmonic number of n. 
Unfortunately, harmonic broadcasting does not always 

deli ver all data on time [8], but two variants have been 
developed which solve that problem without imposing much 
additional waiting time on the customer [8]. 

Like harmonic broadcasting, polyharmonic broadcasting 
(PHB) [8] breaks each video into n segments of equal 
duration d.  It requires however all customers to wait for a 
fixed time interval w = md where m is some integer m ≥ 1 and 
uses this time interval to start downloading the n segments of 
the video.  As a result, segment Si needs only to be 
transmitted once every diw )1( −+  time units.  The band-
width required to distribute the video is thus equal to 
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Polyharmonic broadcasting requires m times more 
segments than harmonic broadcasting to achieve the same 
maximum customer waiting time.  Its bandwidth require-
ments are lower than those of harmonic broadcasting as long 
as m > 1. 

The multitude of streams that all harmonic protocols 
require complicates the task of the STB's and the servers.  
Like HB, pagoda broadcasting (PB) [9] uses fixed-size seg-
ments.  It assigns to each video k video channels whose 
bandwidths are all equal to the video consumption rate and 
partitions these k channels into slots of equal duration.  

Figure 1 shows how PB can pack nine segments into three 
channels.  Each channel is partitioned into slots, whose 
duration is equal to the duration of a segment.  Channel 1 
continuously repeats segment S1 to ensure that it is repeated 
once every slot.  Channel 2 broadcasts segment S2 once every 
two slots and segments S4 and S5 once every four slots.  Even 
though it was not stated in the original description of the PB 
protocol, channel 2 is subdivided into two subchannels of 
equal bandwidth using time-division multiplexing.  The first 
of these subchannels, let us call it subchannel 0, contains all 
even slots of channel 1 and uses them to broadcast segment 
S2 at half the channel bandwidth b.  The second subchannel  
 

Channel Subchannels Segments 
1 – S1 

0 S2 2 

1 S4 and S5 

0 S3 

1 S6 and S7 

3 

2 S8 and S9 

0 S10 to S14 4 

1 S20 to S29 

0 S15 to S19 

1 S30 to S39 

5 

2 S40 to S49 

Figure 2. How pagoda broadcasting maps 49 segments into 5 channels 

(subchannel 1) contains all odd slots of channel 1 and uses 
them to broadcast segments S4 and S5.  Channel 3 is similarly 
subdivided into three subchannels with subchannel 0 
broadcasting segment S3, subchannel 1 broadcasting 
segments S6 and S7, and subchannel 2 broadcasting segments 
S8 and S9.  As Figure 2 shows the same arrangement is 
repeated for all subsequent channels.  All odd-numbered 
channels, but channel 1, are subdivided into three 
subchannels of equal bandwidth while all even numbered 
channels are similarly subdivided into two subchannels.  As a 
result, pagoda broadcasting can pack 49 segments into 5 
channels, which means that the segment size will be equal to 
1/49 of the duration of the video.  Hence no client would ever 
have to wait more than two minutes and half for a two-hour 
video.  A more recent version of the protocol, the new 
pagoda broadcasting protocol uses more complex segment to 
stream mappings and packs more segments into the same 
number of data streams to achieve even lower maximum 
waiting times [9].   

The GEBB protocol [6] improves upon the polyharmonic 
protocol by using channels of equal bandwidth b' < b and 
increasing the size of successive segments rather than 
decreasing the channel bandwidths.  As a result, these 
channels are much easier to multiplex. 

II I. THE FIXED-DELAY PAGODA BROADCASTING 
PROTOCOL  

The fixed-delay pagoda broadcasting (FDPB) protocol 
differs from previous pagoda protocols in two fashions.  First, 
it implements a fixed-delay poli cy that results in lower band-
width requirements than other pagoda protocols.  Second, it 
uses a much simpler segment-to-channel mapping.  

We will consider a video of duration D to be broadcast 
over k channels Cj with 1 ≤ j ≤ k.  The bandwidths of these k 
channels will all be equal to the video consumption rate b.  
The total bandwidth required by the protocol will t hus be 
equal to kb.  Like other pagoda protocols, the FDPB protocol 
will partition each video into n equal-size segments of 
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duration d = D/n.  These n segments will be broadcast at 
different frequencies over the k channels, each segment 
transmission occupying a slot of duration d.   

Unlike previous pagoda protocols, the FDPB protocol 
requires all customers wanting to watch a video to wait for a 
fixed time interval w = md, where m is some integer m ≥ 1.   
The protocol will use this delay to stretch the reception of the 
n segments of the video over a longer time interval.  Previous 
pagoda protocols required segment Si to be repeated at least 
once every i slots to ensure the continuity of the video.  With 
the FDBP protocol, segment S1 needs to be transmitted at 
least once every m slots to be always received before the cus-
tomer starts watching the video. More generall y, segment Si 
will need to be transmitted at least once every 1−+ im  slots.   

As shown on Figure 3, the FDPB protocol partitions each 
channel Cj into sj subchannels in such a way that slot j of 
channel Cj belongs to its subchannel j (mod sj).  Each 
subchannel has thus 1/sj of the slots and 1/sj of the bandwidth 
of channel Cj 

The FDPB protocol also differs from previous pagoda 
protocols in the way it maps segments to channels.   Unlike 
previous pagoda protocols, the FDBP protocol maps 
segments into subchannels in a strict sequential fashion.  
Thus the first segments of the video are mapped into 
subchannel 0 of channel C1, the next segments into 
subchannel 1 of the same channel and so on until all s1 
subchannels of channel C1 have been used.  The process 
repeats itself for the subchannels of channels C2 to Ck.  As a 
result, the whole segment-to-channel mapping can be derived 
from its k + 1 parameters, namely 
a) the number k of channels allocated to the video, 
b) the ratio m between the customer waiting time and the 

segment duration d, and 
c) the numbers s1, s2, …sk of subchannels for each of the k 

channels. 
We quickly found that the optimal number of subchannels 

for a given channel Cj depended on the periodicity at which 
the segments assigned to that channel had to be retransmitted.  
Let  be the first segment assigned to channel Cj.  As we saw 
earlier, segment Si needs to be rebroadcast at least once every 

1−+ im  slots.  By trial and error, we found that the best 
mappings were always achieved when channel Cj was 
partitioned into 1−+ im subchannels.  Hence, it is con-
venient—but not necessary for the correctness of the 
protocol—to assume that the ratio m between the duration of 
the waiting period w and the duration d of a segment is a 
perfect square.  

Consider for instance the case when m = 9.  As Figure 3 
indicates, channel C1 will be partitioned into 3 subchannels.  
The first segment to be broadcast is segment S1.  Since m = 9, 
S1 needs to be repeated at least once every 9 slots.  Let us 
assign it to subchannel 0.  Since subchannel 0 has one third of 
the slots of channel C1, we can map up to three segments into 
it while ensuring that each of these three segments will be 
repeated once every 9 slots.  These three segments will be 
segments S1 to S3. 

Slot 0 1 2 3 4 5 
Subchannel 0 ✔   ✔   

Subchannel 1  ✔   ✔  

Subchannel 2   ✔   ✔ 

Figure 3.  A channel partitioned into 3 subchannels 

Subchannel 0 1 2 
First Segment S1 S4 S8 

Last Segment S3 S7 S12 

Figure 4.  The first channel for m=9. 

Subchannel 0 1 2 3 4 
First Segment S13 S17 S22 S28 S35 

Last Segment S16 S21 S27 S34 S42 

Figure 5.  The second channel for  m=9. 

The first segment to be transmitted by subchannel 1 will be 
segment S4, which needs to be repeated at least once every 
9 + 4 – 1 = 12 slots.  As a result, we will map four segments 
into subchannel 1.  The first segment to be transmitted by 
subchannel 2 will t hus be segment S8.  Since S8 needs to be 
repeated every 9 + 8 – 1 = 16 slots, we will map five 
segments into subchannel 2.  As a result, channel C1 will 
transmit a total of twelve segments.  
The first segment to be broadcast by channel C2 is segment 
S13, which needs to be repeated at least once every 9 + 13 –
 1 = 21 slots.  Since 20 is not a square and the closest square, 
25 = 52, channel C2 will be partitioned into 5 subchannels.  
As Figure 5 shows, subchannel 0 will continuously retransmit 
segments S13 to S16 ensuring that each segment is repeated 
exactly once every 20 slots. Subchannel 1 will t ransmit 
segments S17 to S21 ensuring that segment S17 is repeated at 
least every 9 + 17 – 1 = 25 slots.  Subchannel 2 will t ransmit 
segments S22 to S27 to ensure that segment S22 is repeated at 
least every 30 slots and subchannel 3 will t ransmit segments 
S28 to S34 and subchannel 3 will t ransmit segments S28 to S34 
ensuring that segment S28 is repeated at least every 36 slots.  
Finall y subchannel 4 will repeat segments S35 to S42 ensuring 
that segment S35 is repeated at least every 43 slots.  Hence, 
channel C2 will broadcast 30 segments. 

Table 1 summarizes the segment-to-channel mappings for 
up to seven channels.  Allocating six channels to a video 
allows partitioning it into 2046 segments.  The waiting time 
for the video will t hen be equal to 9/2046 of its duration, that 
is, less than 32 seconds for a two-hour video. 

This is much better than the maximum waiting time of 44 
seconds that can be achieved by the new pagoda broadcasting 
with the same number of channels.  Broadcasting the same 
video over seven channels would reduce the waiting time to 
less than 12 seconds instead of 17 seconds for the new 
pagoda broadcasting protocol. 
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Table 1.  Summary of the mappings for m = 9 

 Channel Number of 
Subchannels 

First 
Segment 

Last 
Segment 

C1 3 S1 S12 
C2 5 S13 S42 
C3 7 S43 S116 
C4 11 S117 S292 
C5 17 S293 S770 
C6 28 S771 S2046 
C7 45 S2047 S5477 

Table 2.  Summary of the mappings for m  = 100 

Channel Number of 
Subchannels 

First 
Segment 

Last 
Segment 

C1 10 S1 S156 
C2 16 S157 S565 
C3 26 S566 S1650 
C4 42 S1651 S4563 
C5 68 S4564 S12418 
C6 112 S12419 S33684 
C7 184 S33685 S91321 

 
We could even reduce this delay by increasing m.  The 

only problem with this approach is that this would partition 
each video into larger and larger numbers of smaller and 
smaller segments.  As shown in Table 2, a FDPB protocol 
with m = 100 could pack 33,783 segments into six channels.  
The waiting time for the same two-hour video would then be 
given by 7200×100/33,783 = 21.4 seconds, that is less than 
half of the maximum waiting time for a new pagoda protocol 
with the same number of channels.  Partitioning the video 
into 33,783 segments implies that each segment would now 
last 7,200/33,783 = 0.213 second. Assuming an average 
bandwidth of 5Megabits/second, this means that each 
segment would contain around 130 kilobytes of data.  This 
still remains a reasonable record size and would not affect the 
performance of the disk subsystem of the video server.   

We can derive a lower bound for the waiting time w of the 
FDBP protocol by computing the limit of this waiting time 
when m goes to infinity and k remains constant.   Consider a 
video of duration D and assume that all customers are willi ng 
to wait w time units between the time they have ordered the 
video and the time they can start watching it.  Let b represent 
the video consumption rate and ∆t a small time interval at a 
location t within the video.  Assuming that each customer 
STB starts downloading video data from the moment the 
video is ordered, the contents of this time interval will have to 
be broadcast at a minimum bandwidth )/( wtb +  where b is 
the video consumption rate. 

Passing to the limit when ∆t goes to 0, we see that the 
minimum bandwidth required to transmit the video is be 
given by  
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From this equation, we can also derive the minimum 
waiting time that can be achieved when the broadcasting 
bandwidth is equal to k times the video consumption rate 

 
1min −

=
ke

D
w  (2) 

Hence the minimum waiting time that can be achieved with a 
bandwidth equal to six times the video consumption rate is 
given by 
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Figure 6 shows the waiting times achieved by the FDBP 
for selected values of m between 4 and 100.  All bandwidths 
are expressed as multiples of the video consumption rate b 
and all waiting times are expressed as fractions of the video 
duration D.  The dotted curve at the top represents the 
maximum waiting times achieved by the new pagoda 
protocol while the tick solid curve at the bottom represents 
the lower bound of equation (2). 

As one can see, the FDPB protocol achieves lower 
maximum waiting times than new pagoda broadcasting at 
every bandwidth.  In particular, with m = 100, a bandwidth 
equal to five times the video consumption suff ices to bring 
the waiting time under 0.81 percent of the duration of the 
video, that is, less than one minute for a two-hour video.   

Our FDPB protocol does not have the same advantage over 
the polyharmonic broadcasting protocol and the GAB 
protocol.  As shown on Figure 7, the polyharmonic 
broadcasting protocol with m = 16 (that is, w = 16d ) provides 
waiting times that are very close to the lower bounds derived 
from equation (1).  This is not the case for the FDPB 
protocol, which performs significantly worse.  The superior 
performance of the polyharmonic broadcasting comes 
however at a price: achieving a waiting time of 20 seconds 
for a two-hour video requires partitioning the video into 
5,760 segments and broadcasting each of these segments on a 
separate channel.  

IV. RESTRICTING THE CLIENT BANDWIDTH 

Like most other broadcasting protocols, the FDBP protocol 
assumes that the set-top box (STB) can and will 
simultaneously receive data from the k channels on which the 
various segments of the video are broadcast.  This 
requirement complicates the design of the STB and increases 
its cost. 

One possible approach to this problem is to restrict the 
STB receiving bandwidth to a given multiple k' < k of the 
video consumption rate.  For instance, the skyscraper 
broadcasting protocol [3] never requires the customer STB to 
receive data from more than two channels at the same time. 

This approach has a major drawback, namely a very 
significant increase in the server bandwidth required to 
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Figure 6.  Waiting times achieved by the FDPB protocol for different values of m. 
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Figure 7. How the FDPB protocol compares to new pagoda broadcasting protocol and polyharmonic broadcasting 

distribute the videos.  Hence, the potential savings in STB 
costs achieved by skyscraper broadcasting would require 
bigger, more expensive video servers and a costlier 
network infrastructure. 

We propose here a less radical implementation of the 
same concept, namely, reducing the client bandwidth 
requirements of an existing protocol to two or three 
concurrent channels.  As we will see, this approach will 
result in very moderate increases of the server bandwidth. 
Consider the case of a FDPB protocol with m = 100 that 
restricts the server client bandwidth to 2 channels.  As 
shown in Table 3, the segment-to-subchannel mappings of 
the two first channels are unchanged.  The first mappings 
to be affected are those of channel C3 as the STB must now 
wait until it has received all data from the first channel 

before starting to receive data from the first channel.  The last 
segment broadcast by the first channel is segment S156.  It is 
broadcast along with segments S134 to S155 by subchannel 0 once 
every 230 slots because their broadcasting period must be a 
multiple of the number of subchannels in the first channel. The 
first segment broadcast by channel C3 is segment S566.  
Recalli ng that the customer waiting time is equal to 100 slots, 
we see that segment S566 must now be broadcast at least once 
every 566 + 99– 230 =435 slots.  Similarly segment S567 has 
now to be broadcast at least once every 567 + 99– 230 =436 
slots and so on.  As a result, channel C3 will now be partitioned 
into ≈435 21 subchannels and will broadcast segments S566 to 
S1268. 

Figure 8 presents the waiting times achieved by a FDPB 
protocol restricting the STB bandwidth to two channels  (k’  = 2) 
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Table 3.  Summary of the mappings for a FDBP limiting the STB 
bandwidth to two channels ( m = 100) 

Channel Number of 
Subchannels 

First 
Segment 

Last 
Segment 

C1 10 S1 S156 
C2 16 S157 S565 
C3 21 S566 S1268 
C4 27 S1269 S2486 
C5 36 S2487 S4617 
C6 47 S4618 S8298 
C7 62 S8299 S14595 

 
and compares them to those achieved by skyscraper broad-
casting and new pagoda broadcasting.  As before, all 
bandwidths are expressed as multiples of the video 
consumption rate b and all waiting times are expressed as 
fractions of the video duration D.  We can see that our 
protocol performs much better than skyscraper 
broadcasting but significantly worse than the new pagoda 
broadcasting protocol.  Given a server bandwidth equal to 
six times the video consumption rate, skyscraper broad-
casting can only achieve a maximum waiting time of 4 
minutes and 27 seconds for a two-hour video.  Our FDPB 
protocol can reduce this delay to 87 seconds, that is, 
slightly more than twice the 42 seconds achieved by the 
new pagoda broadcasting protocol.  Both protocols 
perform significantly worse than the unrestricted version 
of the FDPB, which can achieve a waiting time of 21 
seconds with the same server bandwidth. 

Two factors can explain the large gap between the 
performances of skyscraper broadcasting and the restricted 
version of our protocol.  First, the FDPB broadcasting 
protocol uses much more eff icient segment-to-slot 
mappings than skyscraper broadcasting for its first two 
channels.  As these mappings remain unchanged when the 
STB bandwidth gets limited to two times the video 
consumption rate, this gives a definiti ve edge to our 
protocol.  Second, the skyscraper broadcasting has the 
objective of reducing both the STB bandwidth and the size 
of the STB buffer.  These were both important objectives 
when the skyscraper broadcasting was proposed in 1997, 
as disk drives capable of storing large amounts of video 
data were still expensive.  Nowadays, it is virtuall y 
impossible to buy a new disk drive that cannot contain at 
least four hours of video data.  Hence reducing the size of 
the STB buffer is not as important today as it was then. 

V. CONCLUSION 

We have presented a new pagoda broadcasting protocol 
for VOD that requires all customers to wait for the same 
amount of time before watching the video they have 
ordered.  Our fixed-delay pagoda broadcasting protocol 
(FDBP) uses this delay to reduce the bandwidth required to 
transmit the first minutes of each video.  As a result, it  
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Figure 8. How a FDPB protocol restricting STB bandwidth to two channels 
compares to the new pagoda broadcasting protocol and skyscraper 
broadcasting. 

provides the lowest waiting times of all protocols using 
segments of equal duration and channels of equal bandwidth.  In 
addition, its performance is not very far from the theoretical 
minimum.  We have also shown how we can modify our 
protocol to restrict the STB receiving bandwidth to two times 
the video consumption rate. 

More work is needed to improve the performance of the 
protocol when it is used to transmit variable bit-rate video using 
a constant transmission rate [7] and adjust the transmission 
frequencies of the segments that always arrive one or more slots 
ahead of time because of the constant transmission rate. 
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