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Abstract

Broadcasting protocols reduce the cost of video-on-
demand services by distributing more efficiently videos
that are likely to be simultaneously watched by several
viewers.  Unfortunately, they do not allow the customer to
pause, move fast forward or backward while watching a
video.

We present an interactive pagoda broadcasting proto-
col that provides these functions at a very reasonable
cost.  Our protocol is based on the pagoda broadcasting
protocol and requires a set-top box buffer large enough to
keep in storage all video data until the customer has
watched the entire video.  As a result, rewind and pause
interactions do not require any server intervention.  To
minimize the bandwidth requirements of fast forward
interactions, the server only transmits the segments that
are not available on any of the server broadcasting chan-
nels.

We evaluate the overhead of these fast forward
operations through a probabilistic model.  Our data
indicate that the most costly fast forward operations are
those starting at the beginning of the video and jumping
to the beginning of the second half of the video while most
fast-forward operation taking place during the second
half of the video require little or no additional data.

1. Introduction

Despite all the attractiveness of the concept, video-on-
demand (VOD) [16] has yet to succeed on the
marketplace.  The main reason for this lack of success is
the high cost of providing video services.  As a result,
VOD cannot yet compete on a price basis with its two
more entrenched rivals, namely pay-per-view and video-
cassette rentals.

This situation has led to numerous proposals aiming at
reducing the cost of providing video-on-demand (VOD)
services.  Many, if not most, of these proposals have
focused on finding ways to distribute the top ten or twenty

so-called “hot” videos more efficiently.  Broadcasting
protocols [3] distribute each video according to a fixed
schedule that is not affected by the presence–or the
absence–of requests for that video.  Hence the number of
viewers watching a given video does not affect their
bandwidth requirements.

With the sole exception of staggered broadcasting, all
broadcasting protocols share the common limitation of not
offering any interactive action capability.  They require
the viewers to watch each video in sequence as in a thea-
ter.  Unlike VCRs, they do not provide controls allowing
the viewers to pause the video and interrupt its viewing,
to move fast forward or backward (rewind).

While staggered broadcasting provides some interac-
tive control capability, it only allows viewers to jump
from one staggered stream to another [2].  The sole
advantage of this solution is its simplicity.  Its major
disadvantages are its high bandwidth requirements and its
lack of precision: given a video of duration D distributed
over n broadcasting channels, staggered broadcasting only
allows users to move forward or backward in increments
of D/n times units.  In addition, reducing the granularity
of the jumps is very costly in terms of bandwidth.

We present a more flexible, much less expensive
solution.  With the sole exception of staggered broad-
casting, all broadcasting protocols require a set-top box
(STB) capable of
a) Simultaneously receiving video data from several

channels and
b) Storing these data in its local buffer until the cus-

tomer watches them.
The amount of data to be stored in the STB buffer

varies with each distribution protocol but can be as high
as 50 to 60 percent of the video duration. We propose to
increase the STB buffer size in such a way that the STB
will never have to discard any video data until the cus-
tomer has watched the entire video.  This would allow the
STB to handle locally all pause and rewind commands.
Fast forward interactions would still require the interven-
tion of the video server and would be handled by a few
contingency streams transmitting on demand the missing
video data.



First Channel S1 S1 S1 S1 S1 S1

Second Channel S2 S4 S2 S5 S2 S4

Third Channel S3 S6 S8 S3 S7 S9

Fourth Channel repeats S10 to S14 and S20 to S29

Fifth Channel repeats S15 to S19 and S30 to S49

Sixth Channel repeats S50 to S99

Figure 1: How pagoda broadcasting maps 99 segments into six channels.

To investigate the feasibility of our approach, we have
evaluated the bandwidth overhead caused by adding inter-
active controls to an existing proactive video distribution
protocol, namely, the pagoda broadcasting protocol [13].
We found that the most costly fast forward operations
were those starting at the beginning of the video and
jumping to the beginning of the second half of the video.
Even in this case, transmitting only the missing video data
reduces the cost of the operation by 50 percent.

The remainder of our paper is organized as follows.
Section 2 reviews previous work.  Section 3 introduces
our interactive pagoda broadcasting protocol and Section
4 contains our analysis of the protocol performance.
Finally, Section 5 has our conclusions.

2. Previous Work

The simplest video broadcasting protocol is staggered
broadcasting [16].  A video broadcast under that protocol
is continuously retransmitted over k distinct video
channels at equal time intervals.  The approach does not
necessitate any significant modification to the set-top box
(STB) but requires a fairly large number of channels per
video to achieve a reasonable waiting time.  Consider, for
instance, a video that lasts two hours, which happens to be
close to the average duration of a feature movie.
Guaranteeing a maximum waiting time of five minutes
would require starting a new instance of the video every
five minutes for a total of 24 full-bandwidth streams.

The past five years have seen the development of many
more efficient broadcasting protocols [3].  Most of these
protocols assume that the client set-top box has enough
local storage to store at least one half of each video being
watched.  We can subdivide these protocols into two
groups.  The protocols in the first group are based on
Viswanathan and Imielinski's pyramid broadcasting
protocol [15].  They include Aggarwal, Wolf and Yu’s
permutation-based pyramid broadcasting protocol [1],
Hua and Sheu’s skyscraper broadcasting protocol [5] and
Juhn and Tseng's fast broadcasting protocol [7].

While these protocols require less than half the
bandwidth of staggered broadcasting to guarantee the
same maximum waiting time, they cannot match the per-

formance of the protocols based on the harmonic
broadcasting (HB) protocol [6, 12].  These protocols
divide videos into many equally sized segments and
allocate a separate data stream to each segment.  In
addition, they require the STB to start receiving all these
streams when the customer starts watching the first seg-
ment of a video.  As a result, each segment can be
broadcast using the minimum bandwidth required to
ensure on time delivery of its data

Even though the total bandwidth requirements for HB
and its variants are quite small, the multitude of streams
these protocols involve complicates the task of the STB's
and the servers.  Like HB, pagoda broadcasting (PB) [13]
uses fixed-size segments.  It assigns to each video m video
channels whose bandwidths are all equal to the video
consumption rate and partitions these m channels into
slots of equal duration.  The protocol then tries to find the
segment mapping that maximizes the number n of
segments that can be packed into these m channels while
satisfying the condition that segment Sk, for nk ≤≤1 , is
repeated at least once every k slots.  Figure 1 shows how
the PB protocol maps 99 segments into six channels.
Since the segment size is then equal to 1/99 of the
duration of the video, the maximum customer waiting
time for a two-hour video is 7200/99 = 73 seconds.

Most research on interactive video-on-demand has
focussed on distribution protocols that allocate their video
streams in a dynamic fashion.  Li et al. proposed in 1996
to use contingent streams to handle interactive VOD
operations [9]. More recent work has focused on
minimizing the duration of these contingent streams by
merging them as soon as possible with other streams [10,
11, 8, 4].  Poon et al. have proposed a single-rate
multicast double-rate unicast protocol supporting full
VCR functionality [14].

3. The Interactive Pagoda Broadcasting
Protocol

The interactive pagoda broadcasting (IPB) protocol is
based on the assumption that most customers of a video-
on-demand service will watch videos that they had not
watched before.  Hence these customers will use the



pause and rewind controls much more frequently than the
fast-forward control.

Like the pagoda broadcasting protocol, the IPB proto-
col assigns to each video m video channels whose
bandwidths are all equal to the video consumption rate.  It
then partitions these m channels into slots of equal dura-
tion and assigns to each slot one segment of the video in a
way that guarantees that segment Sk, for nk ≤≤1 , is
repeated at least once every k slots.

As we mentioned earlier, most broadcasting protocols
require a customer STB that can store over one half of
each video being watched on their disk drive.  Assuming a
video distributed in MPEG-2 format with an average
bandwidth of 5Megabits/s, this means that 2.25 Gigabytes
of storage are needed to store the first hour of a two-hour
video.  The cheapest way to provide this buffer capacity is
to add a disk drive to the STB.  Most new disk drives
being sold today have capacities of at least seven
Gigabytes.  A disk drive of that size would allow the STB
to keep any previously played segment of the video being
watched until the end of that video.  As a result, the STB
could handle all pause and rewind requests locally with-
out any server intervention.

Implementing unrestricted fast forward interactions
will require additional bandwidth unless we require each
video to be completely downloaded by the customer STB
before being viewed.  This is not an acceptable solution as
it would either result in unacceptable delays for the cus-
tomer or require an inordinate amount of bandwidth.  A
better solution would be to allocate to each fast forward
request a contingency video stream and use it to transmit
to the customer STB the segments that it does not have
and will not receive on time from the m broadcasting
channels.  One possible option would be to let these con-
tingency streams use the extra server bandwidth that must
be kept available to handle server disk failures.

The next question is to decide whether the server or the
STB will determine which segments are to be included in
the contingency stream.  Making this task the responsibil-
ity of the server would require the server to keep track of
the state of the storage units of all STBs currently receiv-
ing the video.  This could be a daunting task for very
popular videos and would complicate server recovery.
Conversely, giving this responsibility to the STB would
prevent the sharing of segments among contingency
streams.  We propose instead to share this duty between
the STB and the server.  After each fast-forward interac-
tion, the STB will send to the server a request specifying
the video segments it does not have and does not expect to
receive on time.  When the server receives the request, it
checks if some of the requested segments are not already
included in one of the existing contingency streams.
Having done that, it verifies that it has sufficient band-
width to satisfy the customer request.  If this is the case,
the server replies to the STB with a message informing it

of the scheduled time slots and channel allocations of all
the missing segments.

While our solution was strongly influenced by the
work of Carter et al. [4], it differs in at least one major
point.  In order not to increase the size of the STB drive,
these authors assume that the video server will handle all
interactive commands.  We believe our solution will
require much less additional bandwidth without
significantly increasing the cost of the STB.

4. Analytical Study

As we mentioned in the previous section, our IPB
protocol lets the STB handle all pause and rewind opera-
tions without server intervention.  As a result, only fast
forward operation can affect the server workload.  We
will thus focus our analysis on the cost of fast forward
operations.  Unable to find any reliable data on the fre-
quency and the extents of fast-forward operations, we
decided instead to measure directly the average costs of
fast forward operations skipping a given amount of video
data starting at a given position within the video.

To ensure a steady flow of images, the IPB must
ensure that the kth segment of video, say segment Sk, will
be broadcast at least once every k slots. As a first
approximation, we can thus assume that there is at least a
probability 1/k of finding segment Sk in any arbitrary slot.
Consider now a viewer watching segment Sj and wanting
to fast forward to some later segment Sk.  The probability
pk,j that either segment Sk is already in the STB buffer or
can be received on time by the STB will satisfy the ine-
quality

k
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Similarly the probability pk+l,j+l that segment Sk+l will
either be already on the STB buffer or received on time by
the STB will satisfy the inequality

lk

lj
p ljlk +

++≥++
1

, .

Not transmitting the segments that the client already
has or will receive on time from the m broadcasting
channels will reduce the average number of segments
transmitted by the contingency stream by at least
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where n is the number of segments in the video.  Hence,
the average cost of a fast forward from within segment j
to within segment k will never exceed
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where )(nH  is the n-th harmonic number.

In reality, mapping constraints force the protocol to
broadcast some segments slightly more frequently than
they should.   As shown on Figure 1, segment S5 is broad-
cast once every four slots even though it only has to be
broadcast every five slots.  Similarly, all segments in
channel 6 are broadcast once every 30 slots.  In general,
segment Sk, will be broadcast once every s(k) slots with
s(k) ≤ k.  The probability pk,j that either segment Sk is
already in the STB storage unit or it will be received on
time by the STB  is then given by
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Similarly the probability pk+l,j+l that segment Sk+l will
either be already on the STB drive or received on time by
the STB is given by
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Hence, the average cost of a fast forward from within
segment j to within segment k will be equal to

)1,
)(
1

min()1())1,
)(
1

min(1(
00

∑∑
−

=

−

= +
++−+−=

+
++−

kn

l

kn

l lks

lj
kn

lks

lj

where n is the number of segments in the video.
Define θ as the index of the lowest-numbered segment

that is repeated at the same periodicity as the last segment
of the video Sn:

)}()(|min{ nsksk ==θ .

Since s(k) is normally a monotonic non-decreasing
function of k, we will have s(k)=s(n) for all θ ≤ k ≤ n.
Since s(θ ) ≤ θ, this means that s(k ) ≤ θ  for all θ ≤ k ≤ n.

Consider now a fast-forward interaction starting from a
segment Sj such that j ≥ θ.  At that time, the customer
STB would have already received all segments of the
video since none of them would have been broadcast less
frequently than once every θ slots.  Therefore it would not
require additional video data from the video server and
would not result in any bandwidth overhead.

Theorem 1:  Any fast-forward interaction starting
from a segment Sj such that j ≥ θ would not cause any
bandwidth overhead.

Consider, for instance, the case of the IPB protocol
with six channels.  Segments S50 to S99 are all broadcast
once every 50 slots, which means that θ = 50.  Hence any
fast-forward operation taking place during the second half
of the video will be handled by the STB without any
server intervention.  Similarly IPB with five channels
broadcasts segments S30 to S49 once every 30 slots.  Any
fast forward operation taking place during the last 40 per-
cent of the video would also be handled without any
server intervention.

Figure 2 shows the influence of the number of skipped
segments on the cost of a fast forward operation for the
IPB protocol with 5 channels and 49 segments.  Each
segment thus represents 2 minutes and 27 seconds of
playtime for a two-hour video.  The X-axis represents the
number of skipped segments during the fast forward
operation while the Y-axis represents the number of addi-
tional video segments sent by the video server as a result
of the fast-forward operation.  Each curve corresponds to
a different starting point.

As we can see, the most expensive fast forward opera-
tions start while the customer is watching the first
segment of the video and skip 23 segments thus bringing
the viewer to the beginning of segment S25, that is, just
before the beginning of the second half of the video.  The
contingency stream that ensures on time delivery of seg-
ments S25 to S49 has an average duration of 13 segments,
that is, 31 minutes and 50 seconds of data for a two-hour
video.

Even here, the protocol achieves significant bandwidth
savings by excluding from the contingency stream the
segments that the STB has already received or can receive
on time from the five broadcast channels.  A protocol that
would always transmit segments S25 to S49 would have
sent 26 segments, that is, exactly double of what our pro-
tocol requires.

Fast forward operations taking place later in the video
require considerably less bandwidth, mostly because the
STB is more likely to have already received the segments
or to be able to receive them on time from the five broad-
casting channels.  For instance, fast forward operations
starting while customers watch the 16th segment of the
video never require more than an average of 3.0333 seg-
ments, that is, 7 minutes and 26 seconds of data for a two-
hour video.  Fast forward operations starting while
customers watch the 24th segment of the video are almost
free.  All fast forward operations starting after that require
no server intervention.
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Figure 2: Cost of a fast forward as a function of its starting point and the number of segments skipped for IPB with 5 channels and 49
segments.
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Figure 3: Cost of a fast forward as a function of its starting point and the number of segments skipped for IPB with 6 channels and 99
segments.



As Figure 3 indicates, similar conclusions hold for the
IPB protocol with 6 channels and 99 segments.  The most
expensive fast forward operations start while the customer
is watching the first segment of the video and skip 49
segments thus bringing the viewer to the beginning of
segment S51, that is, slightly after the beginning of the
second half of the video.  The contingency stream that
ensures on time delivery of segments S51 to S99 has an
average duration of 23.52 segments, that is, 28 minutes
and 31 seconds of data for a two-hour video.  This is 48
percent of the 49 segments that a protocol that always
transmits segments S51 to S99 would have required.  Fast
forward operations starting while customers watch the
48th segment of the video are almost free.  All fast for-
ward operations starting after the 49th segment of the
video require no server intervention.

We need however to point out that these results only
hold for fast forward operations that are not preceded by
any other interactive request.  Fast forward operations
taking place after one or more pause or rewind requests
will require less bandwidth as the STB will have accu-
mulated more segments in its buffer.  On the other hand,
cascading fast forward operations, especially when a
customer performs incremental fast-forwards throughout
an entire video, will require considerably more band-
width.

Our model did not either consider how segment shar-
ing among contingency streams could reduce the average
number of segments per contingency stream.  We do not
believe this impact to be significant as long as fast
forward operations remain infrequent.

5. Conclusion

Rather than answering individual requests, broadcast-
ing protocols distribute each video according to a fixed
schedule that is not affected by the presence—or the
absence—of requests for that video.  As a result, they do
not provide controls allowing the viewers to pause the
video and interrupt its viewing, to move fast forward or
backward (rewind).  The sole exception is staggered
broadcasting, which allows viewers to jump from one
staggered stream to another [2].  The biggest disadvantage
of this solution is its high cost..

We have presented here an interactive broadcasting
protocol that allows the customer greater control at a
much lower cost.  Our interactive pagoda broadcasting
protocol (IPB) is based on the pagoda broadcasting proto-
col.  Unlike the original pagoda broadcasting protocol, the
IPB protocol requires a STB buffer large enough to keep
in storage all video segments for the whole duration of the
video.  As a result, the STB can handle all rewind and
pause interactions without any server intervention.  To
minimize the bandwidth requirements of fast forward
interactions, the server only transmits the segments that

are not already stored in the STB buffer and are not avail-
able on any of the VOD broadcasting channels.

We have evaluated the actual cost of these fast forward
operations through a probabilistic model.  We found that
the most costly fast forward operations were those starting
at the beginning of the video and jumping to the begin-
ning of the second half of the video while most fast-
forward operation taking place during the second half of
the video required little or no additional data.

Keeping in mind that rewind and pause operations do
not require any server intervention, we can safely
conclude that the bandwidth requirements of our IBP
protocol will remain reasonable as long as fast forward
operations will remain infrequent.
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