
An Available Copy Protocol Tolerating Network Partitions

Jehan-Franc¸ois Pâris

Department of Computer Science
University of Houston

Houston, TX 77204-3475

ABSTRACT

Maintaining in a consistent state multiple copies of the same
data is a complex task, especially when the copies reside on sites
that can be separated from each other by network partitions. All
existing replication controls that tolerate network partitions use
quorumsto provide mutual exclusion and prevent inconsistent
updates. Unfortunately these protocols require a minimum of
n + 2 voting sites to guarantee that the data will remain accessi-
ble in the presence ofn site failures. As a result, they provide
much lower data availabilities than protocols that exclude com-
munication failures.

We present here a replication protocol that extends the
available copyapproach to environments where communication
failures may cause network partitions. Our protocol assumes
that replicas monitor the communication paths linking them with
their peers and can therefore detect network partitions. As a
result, each individual replica can safely establish whether it has
remained up to date or is likely to have missed some updates.

We evaluate under standard Markovian assumptions the
availability of a replicated file consisting of two replicas man-
aged by ourrobust available copy protocolwhen the two repli-
cas are separated by one gateway. We find our protocol to per-
form much better than (1) dynamic-linear voting with three
replicas, (2) dynamic-linear voting with two replicas and one
witness, (3) voting with ghosts with two replicas, and (4) voting
with bystanders with two replicas.

Keywords: distributed consensus, replicated data, replication
control, network partitions.

1. Introduction

Many distributed systems maintain multiple copies—orrepli-
cas— of some critical data at different sites within the system.
This approach has the major advantage of reducing read access
times and allowing continuous access to the data even if some
copies become unreachable owing to site failures or network
partitions. Allowing write access in the presence of equipment
malfunctions introduces however another problem because these
malfunctions are likely to prevent some replicas to receive all
updates. Unless the proper precautions are taken, the replicated
data would end in an inconsistent state where no replica would
have received all updates. Specialreplication control protocols
have been devised to prevent this occurrence. These protocols
achieve a distributed consensus among all operational replicas
and provide them with a single consistent view of the replicated
data.

Voting protocols probably constitute the best known class
of replication control protocols [6, 7]. They offer two major
advantages over other replication control protocols: First they
guarantee the consistency of the replicated data in the presence
of site failures and network partitions while other protocols can
only handle site failures. Second their correctness is easy to ver-
ify since they rely on intersecting quorums to prevent disjoint
writes and to guarantee that every read will necessarily access at
least one of the most recently updated replicas.

This conceptual simplicity comes however with a hefty
cost: quorum requirements do not allow full access to replicated
data unless a majority of the replicas can be reached. As a
result, 2n + 1 replicas are needed to allow full access in the pres-
ence ofn simultaneous replica failures.

Numerous solutions have been proposed to overcome this
limitation. Dynamic voting(DV) [5] and dynamic-linear voting
(DLV) [10] adjust quorums to reflect changes in replica avail-
ability and network topology. A majority of replicas from a pre-
vious majority can thus become the new current majority. A
third protocol proposed by Barbara et al. adjusts replica weights
instead of excluding replicas [4]. These three protocols greatly
improve the availability and reliability of replicated data with
more than two replicas. Thegeneralized quorum consensuspro-
tocol (GQC) [9] exploits available type specific properties of
data files to allow more flexible write quorum assignments.Vot-
ing with witnesses(VWW) [12], voting with ghosts(VWG) [17]
and voting with bystanders(VWB) [13] share the common
thread of introducing auxiliary entities that are used by the pro-
tocol to improve the availability of the replicated data.

While these approaches significantly ease quorum require-
ments, they still provide lower availabilities than replication pro-
tocols that do not rely on intersecting quorums to enforce consis-
tency. Theavailable copy(AC) protocol [2] is probably the best
known of these quorum-free protocols. Unlike voting protocols,
the AC protocol needs onlytwo replicas to protect against a sin-
gle site failure. It also allows data to be read fromany live
replica. This excellent performance comes however at a price:
the AC protocol does not guarantee data consistency in the pres-
ence of partial communication failures as it cannot prevent con-
flicting updates on both sides of a network partition.

While several mechanisms for minimizing the inconve-
nience caused by conflicting updates have been proposed and
implemented [18], none of these mechanisms can guarantee a
satisfactory resolution to all conflicts. We propose instead to
prevent inconsistent updates by making replicas responsible for
the integrity of their communication paths. Inconsistent updates
will be avoided because the sites of at least one side of the parti-
tion will notice they cannot communicate with the replicas on
the other side and disqualify themselves from processing further
access requests.



The remainder of this paper is organized as follows: Sec-
tion 2 describes in detail the AC protocol and introduces our pes-
simistic available copy protocol. Section 3 presents a brief anal-
ysis of replicated file availability under our new protocol and
section 4 has our conclusions.

2. The Pessimistic Available Copy Protocol

The AC protocol is based on the observation that a replica will
remain up to date as long as it is notified of all writes. Broad-
casting all writes to all live replicas would therefore ensure that
reads can be satisfied by any live replica. This approach has
three important consequences: First, a replicated file managed by
the AC protocol remains available as long as one live replica
remains accessible. Second, replicas that reside on sites that
have failed need to be marked non-available orcomatoseuntil
they are brought up to date. Finally, the protocol does not guar-
antee data consistency in the presence of communication failures
as it then becomes impossible to guarantee that all live replicas
receive all write requests.

Recovering from a total failure requires finding the replica
that failed last and upgrading its state from comatose to live.
The original AC protocol [2] assumed instantaneous detection of
failures and instantaneous propagation of this information. Since
then, protocols that do not rely on these assumptions have been
devised. One of them, thenaive available copy(NAC) protocol,
does not maintain any state information and waits until all repli-
cas of the replicated file have recovered to ascertain which
replica failed last. Another variant, theoptimistic available copy
(OAC) protocol, only maintains state information at write and
recovery times. These protocols have been found to perform
nearly as well as the original AC protocol, which was found to
perform much better than all quorum based protocols [11].

2.1. General Principle

Since the AC protocol does not guarantee data consistency in the
presence of network partitions, its usefulness is limited either to
applications where conflicting updates are not a problem or to
environments where network partitions are not likely to occur.
This is the case if all replicas are on the same Ethernet or on the
same token ring as they are both immune to the kind of partial
failures that can create network partitions.

Many local-area networks consist of several Ethernets or
token rings linked by selective repeaters or gateway hosts. The
key difference with conventional point-to-point networks is that
sites that are on the same Ethernet or token ring will never be
separated by a partition. We will call these unpartitionable enti-
tiesnetwork segmentsafter van Renesse and Tanenbaum [17].

Consider now the replicated fileX represented on Figure
1. It consists of two replicas,R1 and R2, located on sitesA and
B respectively. Observe that the two sites communicate with
each other through a third siteG. They are therefore on two dis-
tinct network segments. Any failure ofG would result in a parti-
tion of X into two non-communicating subsets of sites, namely
{ A} and {B}. Consider now the entityB′ that includes both
gatewayG and siteB. We can envision a modified AC protocol
that would treatB′ as the site holding the replica located onB.
Such protocol would view a failure of the gatewayG as a partial
failure of the siteB′ and mark the replica comatose. This would
eliminate any risk of inconsistent updates as comatose replicas
remain unavailable until they have fully recovered.

A

R1

G

B

R2

B’

Figure 1: An file with two replicas on two network segments

A similar approach could be used with the replicated file
represented on Figure 2. It consists of three replicasR1, R2 and
R3 located on three distinct network segments linked by the
gatewaysG and H. Failures of either gatewayG or gatewayH
would result in a network partition. We can here define two
aggregate sitesB′ andC′ such thatB′ includes siteB and gate-
way G while C′ includes siteC and gatewayH. A modified AC
protocol that would run on siteA and the two aggregate sitesB′
andC′ would protect the replicated file against any inconsisten-
cies resulting from a network partition as it would always mark
comatose all replicas located on one side of the failing gateway.

In the two previous examples, we have extended the AC
protocol by having the protocol (a) monitoring potential sources
of network partition and (b) reacting to a partition by marking
comatose all replicas on one side of the partition. We will there-
fore associate with each siteS a communication domain CS con-
taining all the hardware and software resources thatS needs to
reach the communication domains of the other sites. For
instance, the communication domains ofB andC on figure 1 are
respectivelyG andH while the communication ofA is empty as
A needs onlyG to communicate withB and H to communicate
with C. Communication domains can overlap as it would have
been the case if we had selectedCA = { G}, CB = ∅ and
CC = { G, H}. Our robust available copy protocol(RAC) will
operate exactly as conventional AC protocols with the only dif-
ference that replicas that reside on sites whose communication
domains have failed need to be marked comatose and will
remain in that state until they recover.

One simple optimization comes to mind. Consider again
the replicated fileX on figure 1 and assume that siteA has failed
while B andG are operational. The replica on siteB is now the
only live replica ofX. The gatewayG can be safely excluded
from the communication domain ofB and the replica located on
that site does not need to be marked comatose ifG fails beforeA
recovers.



G

B

R2

B’

A

R1

H

C

R3

C’

Figure 2: An file with three replicas on three network segments

We propose therefore to allow adjustments in the mem-
bership of communication domains to reflect changes in
replica availability. The communication domain of a siteS
will therefore be redefined as all the hardware and software
resources thatS needs to reach the communication domains of
the other sites currently holdinglive replicasof the replicated
file.

2.2. Formal Definition

We consider replicated data files consisting of a set of replicas
residing on distinct sites of a local area network. These sites
can fail and can be prevented from exchanging messages
owing to failures in the communication subnet. We will
assume that sites not operating correctly will immediately stop
operations and that all messages delivered to their destinations
will be delivered without alterations in the order they were
sent. Byzantine failures are expressly excluded.

We will focus our attention on replicated files that con-
tain uninterpreted values. Two primitive operations on these
files will be defined: aread operation that returns the current
value of the file and awrite operation that modifies that value
in an arbitrary fashion. To guarantee single-copy serializabil-
ity, we will disallow concurrent write operations and strictly
enforce a single writer policy.

To simplify comparisons between replicas, we will asso-
ciate to each replica atimestampor version numberthat is
increased on each successful write.

Definition 2.1. The communication domainCS of a site S
consists of all the hardware and software resources that S
needs to reach the communication domains of the other sites
currently holding live replicasof the replicated file.

Communication domains can overlap and can be empty. They
can be adjusted to reflect changes in replica availability. The
protocol will not guarantee data consistency if the communi-
cation domains of any pair of live replicas do not contain all
the resources needed by the two replicas to communicate with
each other.

Definition 2.2. A replica is said to beavailableor live if nei-
ther the site on which the replica resides nor the communica-
tion domain of that site have experienced a failure since the
last time the replica was written to or repaired.

A live replica is necessarily up to date as it cannot have
missed any write. Live replicas are the only ones that can per-
form read and write requests.

Definition 2.3. A replica is said to bedeadif it resides on a
site that is not operational.

Definition 2.4. A replica is said to beunavailable or
comatoseif either

(a) the site holding the replica has recovered from a failure
but the replica has not yet been repaired, or

(b) the communication domain of the site holding the
replica has experienced any failure since the last time
the replica was written to or repaired.

Comatose replicas are prevented from performing any reads or
writes. The correctness of the protocol requires that replicas
experiencing a failure in their communication failure notice
that failure before processing any read or write.

Write Protocol 2.1. A write must

(a) be propagated to the communication domains of all live
replicas, and

(b) be acknowledged by at least one of them.

Read Protocol 2.2. A read can be performed on any live
replica.

Recovery Protocol 2.3. To be repaired, a comatose replica
must compare its version number with that of

(a) any live replica, or

(b) one of the replicas that failed last, if no live replica cur-
rently exists.

Should the version numbers differ, the content of the replica is
to be copied from that of any up to date replica.



Note that these read, write and recovery protocols are identical
to the ones used by the AC protocol.

The original AC protocol assumed that site failures are
easily detected and notification of their occurrence can be eas-
ily broadcast to all surviving sites [8]. In general, failures are
hard to detect in a reliable manner. Time-outs are the most
common method to achieve this goal, but they can delay pro-
cessing and are unreliable with heavily loaded sites. Our RAC
protocol does not require instantaneous detection of failures.
It follows the same approach as theoptimistic available copy
protocol [11] and maintains site information only at write and
recovery time. Although consistency is never compromised,
recovery time increases as the state information ages and
becomes out-of-date.

We assume that each gateway has a local clock that can
generate monotonically non-decreasing timestamps. These
local clocks need not be synchronous. We require each gate-
way to maintain aboot timestamp bthat is to be reset to the
current value of the gateway clock every time the gateway
recovers from a failure.

Each site holding a replicar will maintain four data
structures. These are:

(1) aversion number vr that is incremented after every suc-
cessful write operation,

(2) awas-available set Wr that enumerates the replicas that
were alive when the set was updated last,

(3) a gateway vectorGr whosei-th entry Gr
i contains the

set of gateways used byr to communicate with the com-
munication domain of replicai , and

(4) a timestamp vectorzr containing the last collected val-
ues of the local times of the gateways in the communi-
cation domain of the replica.

Was-available sets can be maintained inexpensively by
ascertaining which replicas are operational when the replicated
file is first accessed and by sending this information along
with the first write; the second write will contain the set of
replicas which received the first write and so forth. By delay-
ing the relaying of information this way, we minimize commu-
nication costs. However, it makes it necessary to compute the
closure of the was-available set with respect to a recovering
site r in order to find the last site to fail. Theclosureof a was-
available setWr , writtenC* (Wr ), is given by:

C* (Wr ) =
n

i=0
∪ Ck(Wr )

whereCk(Wr ) =
t ∈Wr
∪ Ck−1(Wt) andC0(Wr ) = Wr .

A major difference with conventional available copy
protocols is that replicas receiving read or write requests must
first find if they are still alive or have become comatose after
the failure of a gateway in their communication domain. As
seen in Figure 3, the algorithm starts by establishing the cur-
rent communication domain of the replicar . This communi-
cation domainD is obtained by taking the union of all entries
in the gateway table that correspond to replicas in transitive
closure of its was-available set. The protocol then requests
from every site inD its boot timestampbs and its local time
ts. S is the set of sites that replied andX the set of sites that
recovered from a failure since the last timer recorded their
boot timestamp inzr . The replica is assumed to be alive if
every sites in D returns a boot timestampbs lesser than or

function SELF_CHECK(r : replica)
begin

let Wr be the was-available set ofr
let Gr be the gateway vector ofr
let zr be the timestamp vector ofr
V = C* (Wr )
D =

s ∈V
∪ Gr

s

<S, b, t>← START(D)
X = { s ∈S|bs > zr

s }
if S= D and X = ∅ then

for all s in D do
zr

s = ts
od
return(LIVE)

else
startRECOVER(s)

return(COMATOSE)
fi

end SELF_CHECK

Figure 3 Self-Check Algorithm

equal to the value recorded inzr
s. The timestamp vector ofr

is then updated by replacing eachzr
s by the correspondingts.

The replica is assumed to be comatose if one or more sites in
D did not answer the request or returned a boot timestampbs
greater than the value recorded inzr

s.

Note that the algorithm could be somewhat simplified if
all sites were to maintain synchronous clocks as there would
be no need to collect local clock values from all gateways nor
to maintain a vector of timestamps for each replica. A proto-
col assuming synchronous clocks would maintain a single
gateway timestampand set it to the network local time every
time the self-check procedure is executed successfully.

The recovery algorithm is run each time a site holding a
replica recovers from a failure or detects its replica is
comatose while running the self check algorithm. The algo-
rithm starts by marking the replicaCOMATOSE and waits until
either

(1) oneLIVE replicas can be found, or

(2) all replicas in the closure of its was-available setWr
have recovered. The current version of the file is then
obtained by computing the highest version number of all
replicas in C* (Wr ) and selecting one replicas with
vs = vmax.

The algorithm then updates the replica and its version number
vr . The new was-available set ofr is computed by includingr
in the was-available set ofs and notifyings that r should be
included in its was-available set. The protocol then completes
the recovery ofr by requesting the current local times of all
gateway sites inG and using these times to update the times-
tamp vector ofr .

Note that a recovery protocol assuming synchronous
clocks would only need to set thegateway timestampof r to
the current network time.



procedure RECOVER(r : replica)
begin

let Wr be the was-available set ofr
let U be the set of all replicas
let Gr be the gateway vector ofr
let zr be the timestamp vector ofr
state(r ) ← COMATOSE
select

when ——
—

t ∈U with state(t)= LIVE =>
skip

or
whenall replicas inC* (Wr ) have recovered=>

vmax = maxr ∈C* (Wr ) { vr }
selectt ∈C* (Wr ) with vt = vmax

end select
repairr from t
vr ← vt
Wr ← Wt ∪ { r }
Wt ← Wr
state(r ) ← LIVE
D = D

s ∈U
∪ Gr

s

t ← START(D)
for all s in D do

zr
s = ts

od
end RECOVER

Figure 4: Recovery Algorithm

2.3. Discussion

To prove the correctness of the RAC protocol, we need to
prove two propositions:

(1) the closure of the was-available set of any replica
always contains the name of a current replica of the file,
and

(2) a replica that has become comatose owing to the failure
of a site in its communication domain will always detect
this change of state before answering any access
request.

Proving the first proposition can be done by observing
first that the condition holds in the initial state where all repli-
cas are alive andWr = U for all r ∈U. It suffices then to show
that the three types of events that can change the state of the
replicated file, namely, write operations, site failures and
replica recoveries, preserve the condition and guarantee that
C* (Wr ) contains the name of a current replica of the file for all
R ∈U. A complete description of the proof can be found in
[11].

Proving the second proposition requires showing that
the self-check algorithm will always detect all gateway fail-
ures that might have affected the state of a replica. The self-
check algorithm makes two essential assumptions about these
failures. First, it assumes that all gateway failures will be
clean failures and that a failing gateway will immediately halt.
Hence, Byzantine failures are excluded. Second, it assumes
that a gateway recovering from a failure will immediately
update its boot timestamp. This second assumption

specifically excludes transient failures unless the gateway has
some means to record their occurrence.

The exclusion of all types of Byzantine failures is a
common feature of all existing replication control protocols.
This exclusion is necessary as protocols tolerating Byzantine
failures would be much slower and have a much higher mes-
sage traffic overhead. In this sense, the RAC protocol is not
less robust than any other voting or non-voting replication
control protocol.

Most system failures are good approximations of a clean
failure because failures are detected before serious damage is
done. There are however at least two types of failures that
need to be handled separately as they do not follow this
paradigm. These are corrupted network tables and buffer
overflow errors.

Gateways can have their routing tables corrupted by
software errors. As a result, the gateway may stop forwarding
packets for one or more sites while continuing to handle cor-
rectly packets directed to other destinations. To detect this
type of failure, the gateway must have some procedure for
checking the integrity of its routing tables, such as recomput-
ing their checksum, and execute this procedure before answer-
ing any request for its current boot time.

Buffer overflow errors occur when a site is overloaded
and packets arrive in its hardware buffer at a faster rate than it
can fetch and process them. One solution is to have a process
continuously monitoring packet arrivals and detecting over-
flows.

3. Stochastic Analysis

In this section we present an analysis of the availability pro-
vided by our protocol and compare it with the availabilities
afforded by the best protocols that tolerate network partitions.
We will assume here that the availability of a replicated file is
the stationary probability of the file being in any state permit-
ting access.AS(n) will denote the availability of a file withn
replicas managed by the protocolS.

Our model consists of a set of sites with independent
failure modes that are connected via a network composed of
network segments linked by gateways. When a site fails, a
repair process is immediately started at that site. Should sev-
eral sites fail, the repair process will be performed in parallel
on those failed sites. We assume that failures are exponen-
tially distributed with mean failure rateλ , and that repairs are
exponentially distributed with mean repair rateµ. The system
is assumed to exist in statistical equilibrium and to be charac-
terized by a discrete-state Markov process.

These assumptions are required for a steady-state analy-
sis to be tractable and have been made in most probabilistic
studies of the availability of replicated data [1, 3, 10-15].
Combinational models that do not require any assumptions
about failure and repair distributions have been proposed [16,
17] but these models cannot distinguish between live and
comatose replicas.



01X

00X

λµ

010

000

λµ

110

100

λµ

111

10X X01

λµ µ

011

001

λµ

010

000

λµ

X10

X00

λµ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

µ

λ

µ

λ

µ

λ

µ

λ

µ

µ

µ

λ

µ

µ

Figure 5: State transition rate diagram for two replicas separated by a gateway and managed by the RAC protocol

Estimating the availability of a replicated file becomes
much more difficult when network partitions are considered
because the number of potential states of a replicated file sub-
ject to network partitions is much larger than when network
partitions are not considered. We will focus our analysis on
the case of a replicated file consisting oftwo replicas separated
by a single gateway.Although larger configurations can be
analyzed using the same approach, we did not include them
here owing to space considerations.

Figure 5 shows the state transition rate diagram for a
replicated file consisting of two full replicas separated by a
single gateway managed by the RAC protocol. Each of its fif-
teen states is represented by a triple<uvw> whereu and w
are the states of the two replicas (1 if live, 0 if dead and X if
comatose) andv is the state of the gatewayG (1 if opera-
tional, 0 otherwise). States where the replicated file is
unavailable are identified by one or two prime marks (′ ′′): A
single prime indicates that replicaA is the sole live replica
while two primes indicates thatB is the sole live replica.

A replicated file with its two replicas and its gateway
fully operational is in state<111>. A failure of the gateway
puts replicaB in a comatose state and brings the file into state
<101A> until the gateway gets repaired. If replicaA fails
before the gateway gets repaired, the file enters state
<001A′> and from there to<000A′> if replica B fails too.
A recovery of replicaA would bring the replicated file either
from state<001A′> to state<101A> or from state<000B′>
to state<100> .

A replicated file in state<111> that loses replicaB
enters state<110A>. The file can either recover and return to
state<111> or fail again and enter either state<100A> or
state<010A′>. A recovery from<100A> can bring the file
either to<110A> or to<101A>.

Finally, a replicated file in state<111> that loses
replica A enters state<011B>. Since replicaB is now the
only live replica, it can exclude the gatewayG from its com-
munication domain. The replicated file will therefore remain

available as long as replicaB remains available. Transitions
between states remain otherwise similar to those observed
between states whereA is the only current replica.

The availability of the replicated file is given by the sum
of the probabilities of the system being in a state permitting
access:

ARAC(1 + 1) = p111+ p110A
+ p101A

+ p100A
+ p011B

+ p101B
+ p001B

where puvw is the probability that the replicated file is in state
<uvw>.

The graph in Figure 6 presents a comparison of the
availability of two replicas separated by a gateway and man-
aged by RAC with those afforded by four other replica config-
urations. This comparison was made for values of the failure
rate to repair rate ratioρ = λ / µ varying between 0 and 0.20.
The first value corresponds to perfectly reliable sites and the
latter to sites that are repaired five times faster than they fail
and have an individual availability of 0. 833.

The first benchmark configuration consisted of three
replicas on two network segments separated by a gateway and
managed by the dynamic-linear voting protocol [10], which is
the best extant voting protocol. We had to include an addi-
tional replica since voting protocols require a minimum of
three voting entities to improve upon the availability of an
unreplicated file. The availability of this configuration is rep-
resented by the curve labeled D(3). Its derivation can be
found in [14].

The second configuration consisted of two replicas on
two network segments and one witness on the gateway linking
the two segments managed by the DLV protocol. The avail-
ability of this configuration is represented by the curve labeled
D(2+W). We selected this configuration to test whether locat-
ing the witness on the gateway could not have the same bene-
ficial effect under the DLV protocol as under the RAC proto-
col.

The third benchmark configuration consisted of two
replicas on two network segments separated by a gateway and



Availability

Failure rate to repair rate ratio

.75

.80

.85

.90

.95

1.

0 .05 .10 .15 .20

RAC(2)

D(3)

D(2+W)

B(2)-W

B(2)-R

G(2)-W

G(2)-R

Figure 6: Compared availabilities of AC and RAC with two
replicas and MCV with three.

managed by the voting with ghosts (VWG) protocol [15, 16].
Since the VWG protocol uses different quorums for reads and
writes, its read and write availabilities are represented by two
curves each labeled G(2)-R and G(2)-W.

Finally, the curves labeled B(2)-R and B(2)-W respec-
tively represent the read and write availabilities of our fourth
benchmark configuration, namely, two replicas on two net-
work segments managed by voting with bystanders [13].

The graph shows the excellent performance of the RAC
protocol and the disappointing performance of the DLV proto-
col with two replicas and a witness located on the gateway. It
shows in particular that two replicas on two network segments
managed by the RAC protocol always outperform three repli-
cas managed by the best voting protocol.

4. Conclusions

Replication control protocols relying on quorum consensus
require at least three replicas to provide a better availability
than that of an unreplicated file. Even then, they tend to pro-
vide much poorer data availabilities than protocols that do not
rely on quorum consensus, such as the available copy protocol
and its variants.

We have presented here a novel replication protocol that
extends the available copy approach to environments where
communication failures may cause network partitions. Our
robust available copyprotocol assumes that replicas monitor
the communication paths linking them with their peers and can
therefore detect network partitions. As a result, each individ-
ual replica can safely establish whether it has remained up to
date or is likely to have missed some updates.

We have shown that two replicas managed by the robust
available copy protocol provide availability that is superior to
that provided by three replicas managed by the best voting
protocol. More work is still required to devise efficient imple-
mentations of the protocol.

Acknowledgements

We thank Elizabeth Paˆris, for her editorial comments.

References
[1] M. Ahamad and M. H. Ammar, ‘‘Performance Characterization

of Quorum-Consensus Algorithms for Replicated Data,’’IEEE
TSE,SE-15, 4 (1989), pp. 492-496.

[2] P. A. Bernstein and N. Goodman, ‘‘An Algorithm for Concur-
rency Control and Recovery in Replicated Distributed
Databases,’’ACM TODS9, 4 (1984), pp. 596-615.

[3] J. Bechta Dugan and G. Ciardo, ‘‘Stochastic Petri Net Analysis
of a Replicated File System,’’IEEE TSE,SE-15, 4 (1989), pp.
394-401.

[4] D. Barbara, H. Garcia-Molina, and A. Spauster, ‘‘Increasing
Availability Under Mutual Exclusion Constraints with Dynamic
Vote Reassignment,’’ACM TOCS7, 4 (1989), pp. 394-426.

[5] D. Davcev and W. A. Burkhard, ‘‘Consistency and Recovery
Control for Replicated Files,’’Proc. 10th ACM SOSP(1985)
pp. 87-96.

[6] C. A. Ellis, ‘‘Consistency and Correctness of Duplicate
Database Systems,’’Operating Systems Review,11 (1977).

[7] D. K. Gifford, ‘‘Weighted Voting for Replicated Data,’’Proc.
7th ACM SOSP(1979), pp. 150-161.

[8] N. Goodman, D. Skeen, A. Chan, U. Dayal, R. Fox and D. Ries,
‘‘A Recovery Algorithm for a Distributed Database System,’’
Proc. 2nd ACM PODS Symp.(1983), pp. 8-15.

[9] M. Herliyi, ‘‘A Quorum-Consensus Replication Method for
Abstract Data Types,’’ACM TOCS,4, 1 (1986), pp. 32-53.

[10] S. Jajodia and D. Mutchler, ‘‘Enhancements to the Voting Algo-
rithm,’’ Proc. 13th VLDB Conf.(1987), pp. 399-405.

[11] J.-F. Paris and D.D.E. Long ‘‘On the Performance of Available
Copy Protocols,’’Performance Evaluation, 11 (1990), pp 9-30.

[12] J.-F. Paˆris, ‘‘Voting with Witnesses: A Consistency Scheme for
Replicated Files,’’Proc. 6th ICDCS(1986), pp. 606-612.

[13] J.-F. Paˆris, ‘‘Voting with Bystanders,’’Proc. 9th ICDCS,(1989),
pp. 394-401.

[14] J.-F. Paˆris, ‘‘Evaluating the Impact of Network Partitions on
Replicated Data Availability,’’Proc. 2nd IFIP DCCA Working
Conf.,(1991).

[15] J.-F. Paˆris and Qun Rose Wang, ‘‘On the Performance of Voting
with Ghosts,’’Proc. Int. Symp. on Applied Computer Sciences,
(1993), (also available as Technical Report UH-CS-93-08).

[16] C. Pu, J. D. Noe and A. Proudfoot, ‘‘Regeneration of Replicated
Objects: A Technique and its Eden Implementation,’’IEEE
TSE,Vol. SE-14, No. 7 (1988), pp. 936-945.

[17] R. van Renesse and A. Tanenbaum, ‘‘Voting with Ghosts,’’
Proc. 8th ICDCS,(1988), pp. 456-462.

[18] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H.
Siegel and D. C. Steere, ‘‘Coda: A Highly Available File Sys-
tem for a Distributed Workstation Environment,’’IEEE TC,39,
4 (1990), pp. 447-459.


