
On the Performance of Voting with Ghosts

Jehan-Fran�cois Pâris Qun Rose Wang �

Department of Computer Science

University of Houston

Houston, TX 77204-3475

Technical Report UH-CS-93-08

Abstract

Voting with Ghosts (VWG) is a static voting pro-
tocol tailored to manage replicated data that are
stored on networks that can only be partitioned
at certain places. We present in this paper the
�rst Markov analysis of the availability of repli-
cated data managed by the VWG protocol and
show how this availability can be improved by
transforming it into a dynamic protocol.

1 Introduction

Data are often replicated in distributed systems
either to reduce read access times or to provide
constant data availability in the presence of par-
tial network failures. This technique is known
as data replication. As it can be expected, data
replication introduces its own problems, the most
important of which is maintaining all replicas in
a consistent state. This is a complex task because
host failures and network partitions often occa-
sion incomplete updates that leave some replicas
untouched.

Special replication control protocols have been
devised to perform this task in a transparent
fashion. These protocols di�er in their message
overhead, their handling of network partitions
and the data availabilities they provide.

A �rst class of protocols takes the approach
that network partitions are unlikely to occasion

�Internet Addresses: paris@cs.uh.edu,

rosewang@cs.uh.edu

conicting updates and that many of these con-
icts will be easy to resolve. These are known
as optimistic protocols. The best known of them
is the available copy protocol (AC), a variant of
which was implemented in the Coda �le system
[10].

The second class of protocols take the approach
that data consistency carries a much more impor-
tant weight than data availability. These proto-
cols are said to be pessimistic. They rely on quo-
rum mechanisms to prevent conicting updates.
As a result, they provide lower data availabilities
than optimistic protocols. The best known pes-
simistic protocols includemajority consensus vot-

ing (MCV), weighted voting (WV) [2], dynamic

voting (DV)[1] and dynamic-linear voting (DLV)
[3] and voting with witnesses (VWW) [7, 4].

Voting with ghosts (VWG) [8, 9] was intro-
duced by Tanenbaum and van Renesse with the
twofold intent of (a) providing the level of data
availability as optimistic replication control pro-
tocols and (b) guaranteeing data consistency in
the face of network partitions. VWG is based on
the observation that many local area networks
consist of indivisible network segments linked by
gateways. Hence these gateways are the only
places at which these networks can be parti-
tioned. VWG associates with each indivisible
network segment a boot service whose mission is
to monitor the network segment. Every time the
boot service detects the failure of a node holding
a replica, it starts a ghost for that replica. This
ghost will hold no state and represent the failed
replica for all write quorums.

Tanenbaum and van Renesse found that VWG

1

performed much better than other static voting
protocols and nearly as well as the AC proto-
col. Their �ndings were unfortunately based on
a purely combinational model that did not repre-
sent accurately the recovery behavior of the pro-
tocol. As a result, there was no way to know how
this recovery behavior a�ected the overall perfor-
mance of the protocol nor to evaluate the impact
of potential re�nements.

We present in this paper the �rst Markov anal-
ysis of the availability of replicated data man-
aged by the VWG protocol. Besides the standard
Markovian hypotheses, we assume (a) that the
boot service is su�ciently replicated to be very
unlikely to fail, and (b) that there will always
be an operational node on which a ghost can be
started. We further use our model to show how
the data availability of VWG can be improved by
transforming it into a dynamic voting protocol.

The remainder of the paper is organized as fol-
lows: Section 2 describes the VWG protocol in
more detail. Section 3 contains a stochastic anal-
ysis of the availability of replicated data managed
by VWG. Section 4 introduces our improved dy-
namic VWG protocol. Finally section 4 has our
conclusions.

2 Voting with Ghosts

VWG is a pessimistic protocol speci�cally tai-
lored to networks consisting of network segments

that cannot be partitioned but are linked by gate-
ways that can fail. Point-to-point networks and
other networks that cannot guarantee that some
sites will never be separated from each other by
a network partition are excluded.

VWG uses weighted voting as its basic algo-
rithm. It assigns a number of votes to each copy
of a replicated object. Assume the read quorum
is r, the write quorum is w and the total number
of votes in all copies is N . r + w > N is re-
quired because an intersection between the read
quorum and the write quorum is needed to guar-
antee the latest version of the object is contained.
Every write operation to a replica of the object
includes incrementing the version number vi as-
sociated with the object. If w 6= N and the cur-

rent version number is unknown, a read quorum
is needed to obtain the current version number.
If w = N there is no need to maintain a version
number since all copies are updated at the same
time. At any time, if a read or a write quorum
cannot be obtained, the attempted operation has
to wait until after a satisfactory number of votes
can be reached. Hence no writes are possible if a
read and a write quorum are not satis�ed.

VWG uses ghosts to represent failed nodes. A
ghost is a process without storage. VWG as-
sumes that there is one boot service per network
segment whose function is to monitor all nodes
holding replicas. Whenever the boot service de-
tects that a node holding a replica has failed, it
immediately starts a ghost on an arbitrary node
of its network segment. This ghost is assigned
the same number of votes as the failed replica.

By de�nition, network segments cannot parti-
tion. Hence, the presence of a ghost replacing a
given replica is a guarantee that the replica be-
came unavailable because a site failure and not
because a network partition. Ghosts are allowed
to participate in write quorums but cannot reply
to read quorum requests since they do not have
any real storage. Whenever a ghost receives a
write request, it pretends to execute the request
and answers with a special reply. This special
reply is necessary to let the coordinator of the
write request verify that there is at least one real
replica in the quorum.

When a node recovers from a crash, all replicas
residing on that node turn comatose. A comatose
replica keeps acting like a ghost until (a) it re-
ceives a request rewriting the whole replicated
object, or (b) it collects a read quorum to copy
the latest version of the replicated object. Note
that comatose replicas cannot recover whenever
the number of operational non-comatose replicas
falls beneath the read quorum until all replicas
have recovered. It is only then that the protocol
can compare the version numbers of all replicas
and �nd which ones have the most recent version
of the replicated object [8, 9].

2

3 Markov Analysis

In this section we present an analysis of the avail-
ability provided by the voting with ghosts pro-
tocol. We de�ne the availability of a replicated
object as the stationary probability of the object
being in a state permitting access. AOP (n) will de-
note the availability of an object with n replicas
managed by a protocol P for an operation O.

Our model consists of a set of nodes with inde-
pendent failure modes that are connected via an
arbitrary network composed of network segments
linked by repeaters and gateways. When a node
fails, a repair process is immediately started at
that node. Should several nodes fail, the repair
process will be performed in parallel on those
failed nodes. We assume that failures are ex-
ponentially distributed with mean failure rate �;
that repairs are exponentially distributed with
mean repair rate �; and that ghost generation
process is characterized by a Poisson process with
mean rate �. The system is assumed to exist in
statistical equilibrium and to be characterized by
a discrete-state Markov process.

The assumptions that we have made are re-
quired for a steady-state analysis to be tractable.
Similar assumptions have been made in most re-
cent probabilistic analyses of the availability of
replicated data [3, 6, 7]. We further assume (a)
that the boot service is su�ciently replicated to
be very unlikely to fail, and (b) that there will
always be an operational node on which a ghost
can be started.

We consider �rst the case where all replicas
are on the same indivisible network segment (and
data availability is not a�ected by gateway fail-
ures). Figure 1 has the state transition diagram
for two replicas located on the same network seg-
ment. Each state is identi�ed by a pair hxyi
where x is the number of operational replicas and
y is equal to G if a ghost is present and to 0 oth-
erwise. Comatose replicas are identi�ed by an
X. Bold arrows represent failure transitions while
light arrows denote host recoveries or ghost cre-
ations.

State h20i represents the initial state of the two
replicas when they are both operational. A fail-
ure of either one of them would bring the system

in state h10i; the transition rate from state h20i
to state h10i is 2�. The system will remain in
state h10i until (a) the failed replica recovers and
the system returns to state h20i, (b) the opera-
tional replica fails and the system goes to state
h00i, or (c) the boot service creates a ghost to re-
place the replica that failed and the systemmoves
to state h1Gi (one replica and a ghost). The fail-
ure of the ghost would return the system to state
h10i while the recovery of the failed replica would
bring back the system to state h20i.

Note that there is no state h0Gi. Since ghosts
play no role in the recovery from a failure of both
replicas, state h0Gi is merged into state h00i and
a failure of the operational replica of state h1Gi
brings the system in state h00i. After a total fail-
ure, the recovering replica will stay in a comatose
state (state hX0i) until both replicas have recov-
ered and the system is back to its original state
h20i.

Assuming a write quorum W = 2 and a read

quorum R = 1, the read availability of the two
replicasARVWG(2) is equal to the sum of the prob-
abilities of being in one of the three states where a
read quorum can be obtained, namely h20i, h10i
and h1Gi:

ARVWG(2) = p20 + p10 + p1G =
1 + 3�

(1 + �)3

where pij is the probability for the system being
in state hiji and � = �

�
is the failure rate to

repair rate ratio. This expression also happens
to be the availability of two replicas managed by
the Naive Available Copy protocol, a variant of
the AC protocol that does not maintain any site
failure information and waits for the recovery of
all replicas after each total failure [6].

The write availability of the two replicas
AWVWG(2) is given by

AWVWG(2) = p20+p1G =
1 + + 3�+ 3 �+ 2�2

(1 + �)3(1 + + 2�)

where = �
�
is the ghost generation rate to re-

pair rate ratio. Note that

lim
 !0

AWVWG(2) =
1

(1 + �)2

while

lim
 !1

AWVWG(2) =
1 + 3�

(1 + �)3
= ARVWG(2)

3

20

1G

10 00

X0

2µ
λ

λ

λµ

2λ

κ

µ

µ

λ

Figure 1: State-transition diagram for two replicas on same network segment

In other words, VWG with two replicas on
the same LAN segment provides excellent read
and write availabilities whenever the boot pro-
cess quickly detects replica failures and creates
promptly the required ghosts. Failures of the
boot service to create these ghosts in a timely
fashion has no e�ect on the read availability of
two replicas while it severely limits their write
availability. These �ndings are summarized on
the graph of �gure 2, where the availability of
the two replicas are plotted for values of � vary-
ing between 0 (no failures) and 0:20 (replicas re-
pair �ve times faster than they fail and have an
average availability of 0:883).

As �gure 3 shows, the state transition diagram
for two replicas on two network segments linked
by a gateway is much more complex since it has
to take into account gateway failures. States are
represented by triples hxyzi where y denotes the
state of the gateway (1 if operational, 0 other-
wise) and x and z respectively denote the states
of the two replicas (1 if operational, 0 if dead,G if
replaced by a ghost and X if comatose). Instead
of enumerating all the 32 possible states, our dia-
gram merges symmetric states such as h110i and
h011i, which are merged into h110i, and does not
keep track of ghosts whenever a read quorum can-
not be satis�ed. The read availability of the two
replicas ARVWG(1 + 1) is then given by:

ARVWG(1 + 1) =
2 + 11�+ 18�2

(1 + �)2(1 + 2�)(2+ 3�+ 2�2)

while their write availability is given by:

AWVWG(1 + 1) =

(2(4�2 + 7�+ 2) + (2�+ 1)

(7�2 + 15�+ 6) + (2�+ 1)

(6�3 + 13�2 + 12�+ 4))=

((+ 3�+ 2)(+ 2�+ 1)

(2�2 + 3�+ 2)(�+ 1)3)

Note that

lim
 !0

AWVWG(1 + 1) =
1

(1 + �)3

while

lim
 !1

AWVWG(1 + 1) =
2 + 7�+ 4�2

(1 + �)3(2 + 3�+ 2�2)

6= ARVWG(1 + 1)

As seen on �gure 4, we observe here a very di�er-
ent behavior of VWG. While the read availability
of the two replicas continues to be quite satisfac-
tory, their write availability is quite low. One can
indeed verify that

AW (1 + 1) <
1

1 + �
;

which is the availability of a single replica. In
other words, replication actually lowers the write
availability of the replicated data. This paradox-
ical behavior of VWG can be easily explained if
one considers that a write quorummust consist of
either both replicas or one replica and the ghost
of the other one. Hence, any failure of the gate-
way through which the two replicas communicate
will disable all write accesses.

We can generalize this observation to an arbi-
trary number of replicas and formulate the fol-
lowing theorem:

4

RA: read availability
WA: write availability

WA when ψ = 0

WA when ψ = 1
WA when ψ = 2
WA when ψ = 5
WA when ψ = 10

RA & WA when ψ = Infinity

0 0.1 0.2

Failure rate to repair rate ratio ρ

0.6

0.8

1
A

va
ila

bi
lit

y

Figure 2: Availabilities of VWG for two replicas on same network segment

Theorem 1 The write availability of replicated

data managed by the VWG protocol using a read
one/write all policy cannot exceed the probability

that the replicated data remain unpartitioned.

Proof: Under a read one/write all policy, the
write quorum must include the votes of all nodes
holding replicas. While failing nodes can be re-
placed by ghosts, these ghosts are always created
on the same indivisible network segment as the
replica they replace. Hence any network parti-
tion among the replicas will make the votes of
at least one node unavailable and will disable all
write accesses as long as the partition has not
been repaired.

4 A Dynamic Protocol

The only way to improve the write availability of
VWG in environments where network partitions
cannot be discounted is to adjust the protocol
quorums in such a way that no single gateway
failure can prevent the gathering of a write quo-
rum. This necessarily implies the abandonment

of the read one/write all policy in favor of smaller
write quorums and larger read quorums.

Increasing the size of read quorums has two
undesirable consequences. First, it increases the
cost of read requests as these requests cannot
continue to be handled by a single site. Second,
it increases the likelihood that the number of op-
erational non-comatose replicas falls beneath the
read quorum. This is a much more serious prob-
lem as it appears because of the lengthy recovery
process that the event triggers. As we saw earlier,
VWG disables all read and write accesses when-
ever the number of non-comatose replicas falls
beneath the read quorum until all replicas have
recovered and can compare their version num-
bers.

Consider for instance the case of three repli-
cas managed by VWG with the read and write
quorums both set to two. Any simultaneous fail-
ure of two of these three replicas would disable
all accesses to the replicated data until the three
replicas have recovered. Hence, the availability
of the replicated data is lower than it would have
been if the three replicas had been managed by
majority consensus voting.

5

110

X10 010

11G

X00

X0X

100

10X 10G

000

101

111

λ

λ

λ

λ

λ

λ

λ

λ

λ

2λ

2λ

λ

λ

2λ

2µ

µ

µ

µ

µ

µ

λ

µ

µ

µ

µ

µ

µ

λ

2µ

κ

κ

µ

Figure 3: State-transition diagram for two replicas on two network segments

The solution we propose is making the VWG
protocol dynamic. Dynamic voting protocols ad-
just read and write quorums whenever they de-
tect a change in the number of available replicas
[1, 3, 5]. The main idea is to reduce quorum sizes
whenever node crashes and network partitions re-
duce the number of replicas that can be reached
and to increase them whenever a failed replica
becomes operational again or a network partition
gets repaired. Hence successive quorums adjust-
ments often result in keeping the data available
even when a majority of the replicas have be-
come unreachable. Central to all dynamic voting
protocols is the notion of a majority partition or
majority block. This majority block contains all
replicas that are believed to be reachable. When-
ever the protocol detects that some replicas in
the majority block have become unreachable it
checks �rst that a majority of the replicas in the
current majority block can be reached. If this
is the case, the unreachable replicas are excluded
from themajority block and a newmajority block
is formed. Otherwise the replicated data remain
unavailable until some of the unreachable repli-

cas can be reached again. Finally, the excluded
replicas are prevented from participating in vot-
ing till they are formally reintegrated into the
current majority block.

An important issue in the design of any dy-
namic voting protocol is the mechanism used to
detect changes in the composition of the majority
block. Davcev and Burkhard's dynamic voting
protocol assumed a monitoring process instantly
recording the state of the network with respect
to each site [1]. More recent dynamic voting pro-
tocols, such as dynamic-linear voting [3] and op-

timistic dynamic voting [5], update the majority
block only at access time. These two protocols
are much simpler to implement than Davcev and
Burkhard's original protocol but fail to react to
failures occurring when the replicated data are
not accessed. We decided therefore in favor of
a third mechanism. In our dynamic voting with

ghosts (DVWG) protocol, the boot server is re-
sponsible for detecting changes in replica acces-
sibility resulting from site failures and network
partitions. Whenever this is the case, the boot
server that detected the failure immediately re-

6

WA when ψ = 0

WA when ψ = 1
WA when ψ = 2
WA when ψ = 5
WA when ψ = 10
WA when ψ = Inf.

RA

RA: read availability
WA: write availability

0 0.1 0.2

Failure rate to repair rate ratio ρ

0.6

0.8

1
A

va
ila

bi
lit

y

Figure 4: Availabilities of VWG for two replicas on two network segments

quests the formation of a new majority block.
Note that there is no need to generate ghosts for
the failed replicas unless a new majority block
excluding these replicas cannot be formed.

Figure 5 has the state transition diagram for
two replicas managed by our DVWG protocol
when the two replicas are on the same network
segment. States are identi�ed by triples hxyzi
where x is the number of operational replicas, y
the number of ghosts, and z the number of repli-
cas in the current majority block.

State h202i represents the original state of the
system when the two replicas are reachable, the
majority block contains the two replicas. A fail-
ure of either of these two replicas would bring the
system in state h102i. Should the second replica
fail before the boot service has detected the fail-
ure of the �rst replica, the system would go to
state h002i. A recovery of any of these two repli-
cas would bring the system in state hX02i and
the replicated data would remain unavailable un-
til both replicas have recovered and the system
brought back to state h202i.

It is however more likely that the boot service

will detect the replica failure before both replicas
have failed. The boot service will then generate
a ghost to replace the failed replica and imme-
diately begin the reorganization of the majority
block. This reorganization will succeed because
the surviving replica and the ghost of the failed
replica constitute valid read and write quorums.
As a result of the reorganization, the surviving
replica becomes the sole member of the new ma-
jority block and the system moves to state h101i.
The new read and write quorums are equal to 1.
Note that the new state is labeled h101i and not
h111i: since the ghost does not belong to the new
majority block, it ceases to play any role in votes.

A failure of the surviving replica would bring
the system in state h001i. The recovery of one
the two failed replicas would bring the system:

(a) back to state h101i if the recovering replica
is the replica that failed last (and is therefore
the sole replica in the current majority block,
or

(b) to the new state hX01i if the recovering
replica is the other replica.

7

202

101

002

2µ
λ
λ

λ

µ

2λ

κ
µ

µ

102

001

X01

X02

µ
µ

µ
λ

Figure 5: State-transition diagram for two replicas on same network segment

Since state hX01i is an unavailable state. the
replicated data will remain until both replicas
have recovered and the system brought back to
state h202i.

The read availability of the replicated data is
given by the sum of the probabilities of the states
where a read quorum can be obtained, namely
h202i, h102i and h101i:

ARDVWG(2) = p202 + p102 + p101

=
1 + 4�+ 3�2 + (1 + 3�+ �2)

(1 + �+)(1 + �)3

where = �
�
. Observing that

lim
 !0

ARDVWG(2) =
1 + 3�

(1 + �)3

and

lim
 !1

ARDVWG(2) =
1 + 3�+ �2

(1 + �)3

one can see that the read availability of two repli-
cas managed by DVWG remains very good for all
values of .

The situation is quite di�erent for the write

availability. We have:

AWDVWG(2)

= p202 + p101

=
1 + 3�+ �2

(1 + �)3
�

�(2 + �)

(1 + �+)(1 + �)2

with

lim
 !0

AWDVWG(2) =
1

(1 + �)2

and

lim
 !1

AWDVWG(2) =
1 + 3�+ �2

(1 + �)3
= ARDVWG(2)

Figure 6 summarizes these results. While
DVWG provides better read and write availabil-
ities than VWG. it still fails to provide accept-
able write availabilities whenever the boot pro-
cess does not detect replica failures in a timely
fashion or fails to create the required ghosts.

These availability �gures have to be compared
with those achieved by Davcev and Burkhard's
dynamic voting protocol [1] and by Jajodia and
Mutchler's dynamic voting protocol [3]. Since the
dynamic voting protocol disallows access to the
replicated data whenever a tie occurs, a repli-
cated object with two replicas will remain avail-
able as long as both replicas are accessible. Hence

ARDV (2) = AWDV (2) =
1

(1 + �)2

The availability provided by the dynamic-linear
voting protocol is somewhat better since DLV
uses the lexicographic ordering of sites to break
ties. The protocol therefore distinguishes be-
tween a \�rst" site and a \second" site. Hence
the replicated data remain available as long as

8

WA when ψ = 0

WA when ψ = 1

WA when ψ = 5
WA when ψ = 10

WA when ψ = 2

RA when ψ = 0
RA & WA when ψ = Inf.

RA: read availability
WA: write availability

0 0.1 0.2

Failure rate to repair rate ratio ρ

0.6

0.8

1
A

va
ila

bi
lit

y

Figure 6: Availabilities of DVWG for two replicas on same network segment

the replica located on the \�rst" site remain ac-
cessible. We have thus

ARDLV (2) = AWDLV (2) =
1

(1 + �)

As seen on �gure 7, these availabilities are well
below those provided by DVWG as long as the
boot server can detect site failures �ve to ten
times faster than sites can be repaired. This con-
dition is very easy to satisfy since the boot server
will typically poll sites every few seconds while
site repairs may take from ten minutes to several
hours or even more. While the ghosts generated
by the boot server normally remain short-lived,
they play nevertheless an important role as they
provide the votes necessary to break ties.

5 Conclusion

VWG is a pessimistic protocol that attempts to
replace failed replicas by ghosts residing on the
same network segment as the failed replica. Al-
though holding no data, ghosts can testify that
the replica they replace have failed and vote for
them in all write quorums.

We have presented in this paper the �rst
Markov analysis of the availability of replicated
data managed by the VWG protocol under the
hypothesis that the ghost creation process was
very unlikely to fail. We found that the VWG
protocol performed nearly as well as the Naive
Available Copy protocol when all the replicas
were on the same indivisible network segment.
We also found that the VWG provided much
lower availabilities when the two replicas it man-
ages were separated by a gateway. Finally, we
have shown how the availability a�orded by the
VWG protocol can be improved by transform-
ing it into a dynamic protocol where read and
write quorums are adjusted every time the pro-
tocol detects a change in the number of reachable
replicas.

More work is still needed to study more com-
plex con�gurations and to evaluate the impact of
boot process failures.

References

[1] D. Davcev and W. A. Burkhard, \Consistency
and Recovery Control for Replicated Files,"

9

RA: read availability
WA: write availability

RA & WA when ψ = Inf.

RA & WA

RA & WA

WA when ψ = 10
WA when ψ = 5

DVWG

DLV

DV

0 0.1 0.2

Failure rate to repair rate ratio ρ

0.6

0.8

1
A

va
ila

bi
lit

y

Figure 7: Compared availabilities of DVWG and DLV and DV for two replicas on same network
segment

Proc. 10th ACM Symposium on Operating Sys-

tem Principles, (1985) pp. 87-96.

[2] D. K. Gi�ord, \Weighted Voting for Replicated
Data," Proc. 7th ACM Symposium on Operating

System Principles, (1979), pp. 150-161.

[3] S. Jajodia and D. Mutchler, \Dynamic Voting
Algorithms for Maintaining the Consistency of a
Replicated Database,"ACM Trans. on Database

Systems, Vol. 15, No. 2 (1990), pp. 230-405.

[4] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson,
L. Shriura and M. Williams, \Replication in the
Harp File System," Proc. 13th ACM Symposium

on Operating System Principles, (1991) pp. 226-
238.

[5] D. D. E. Long and J.-F. Pâris, \A RealisticEval-
uation of Optimistic Dynamic Voting," Proc.

7th Symposium on Reliable Distributed Systems,

(1988), pp. 129-137.

[6] J.-F. Pâris and D.D.E. Long, \On the Perfor-
mance of Available Copy Protocols," Perfor-

mance Evaluation, 11 (1990), pp. 9-30.

[7] J.-F. Pâris, \Voting with Witnesses: A Consis-
tency Scheme for Replicated Files," Proc. 6th

International Conference on Distributed Com-

puting Systems, (1986), pp. 606-612.

[8] R. van Renesse and A. Tanenbaum, \Voting
with Ghosts," Proc. 8th International Confer-

ence on Distributed Computing Systems, (1988),
pp. 456-462.

[9] R. van Renesse, \The Functional Processing
Model," Doctoral Dissertation, Fakulteit der
Wiskunde en Informatika, Vrije Universiteit
Amsterdam, The Netherlands (1989).

[10] M. Satyanarayanan, J. J. Kistler, P. Kumar,
M. E. Okasaki, E. H. Siegel, and D. C. Steere,
\Coda: A Highly Available File System for
a Workstation Environment," IEEE Trans. on

Computers, Vol. C-39, 4 (1990), pp. 447-459.

10

