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ABSTRACT 

We present the first broadcasting protocol that can alter the number of channels allocated to a given video without 
inconveniencing the viewer and without causing any temporary bandwidth surge.  Our variable bandwidth broadcasting 
(VBB) protocol assigns to each video a minimum number of channels whose bandwidths are all equal to the video 
consumption rate.  Additional channels can be assigned to the video at any time to reduce the customer waiting time or 
retaken to free server bandwidth.  The cost of this additional flexibility is quite reasonable as the bandwidth requirements 
of our VBB fall between those of the fast broadcasting protocol and the new pagoda broadcasting protocol. 

1.  INTRODUCTION 

Broadcasting protocols offer the best solution for the successful deployment of metropolitan video-on-demand (VOD) 
services because they provide a way to distribute very popular videos in an efficient fashion and these so-called “hot”  
videos are expected to account for the majority of customer requests.  Rather than reacting to individual viewer requests, 
broadcasting protocols distribute the contents of videos according to a fixed schedule guaranteeing that all customers 
will receive these contents on time.  As a result, the number of customers watching a given video does not affect the 
server workload.   

All recent VOD broadcasting protocols derive in some way from Viswanathan and Imielinski’s pyramid broadcasting 
protocol12 and, like it, they assume that most, if not all, users will watch each video in a strictly sequential fashion.  They 
also require customers to be connected to the service through a “smart”  set-top box (STB) capable of (a) receiving data 
at rates exceeding the video consumption rate and (b) storing locally the video data that arrive out of sequence.  In the 
current state of storage technology, this implies having a disk drive in each STB, a device already present in the so-
called digital VCR’s offered by TiVo10, Replay9 and Ultimate TV11. 

We can classify VOD broadcasting protocols into two broad groups according to the way they broadcast the various 
segments of each video.  Harmonic broadcasting protocols4, 6 assign a separate data stream to each segment of a video.  
The very low bandwidth requirements of these protocols result from the fact that they transmit each segment at the 
minimum bandwidth required to ensure its on-time delivery to a viewer watching the video in a sequential fashion.  The 
second group of broadcasting protocols is comprised of protocols that broadcast each video over a fixed number k of 
data channels whose bandwidths are normally equal to the video consumption rate b.  As we will see, they achieve their 
bandwidth savings through the use of time division multiplexing. 

Research on VOD broadcasting protocols has been focused on two main axes, namely, (a) designing protocols that 
require less bandwidth to achieve the same customer waiting time, and (b) designing protocols that switch to a reactive 
approach when the number of user requests is too low to justify maintaining a deterministic broadcasting schedule.  So 
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Figure 1.  The first three channels for the FB protocol 

far,�scant attention has been given to the problem of dynamically altering the bandwidth allocated to a popular video to 
reflect changes in bandwidth availability.  For instance, the operator of a video service might want to reduce the number 
of channels allocated to some videos to make space for a new offering or to increase the number of channels allocated to 
a video when extra bandwidth is available.  Decisions of this kind are analogous to the movie scheduling decisions made 
daily by managers of theater multiplexes: they may want sometimes to show the same movie on two or three different 
screens or have at other times two movies shown at alternate times in the same auditorium. 

We present a broadcasting protocol that can alter the number of channels allocated to a given video without 
inconveniencing any customer and without causing any temporary bandwidth surge.  Our variable bandwidth 
broadcasting (VBB) protocol assigns to each video a minimum number kmin of channels whose bandwidths are all equal 
to the video consumption rate b.  Additional channels can be assigned to the video at any time in order to reduce the 
customer waiting time or withdrawn in order to free server bandwidth.  The cost of this additional flexibility is quite 
reasonable as the bandwidth requirements of our VBB fall between those of the fast broadcasting protocol5 and the new 
pagoda broadcasting protocol7. 

The remainder of the paper is organized as follows.  Section 2 reviews relevant previous work on broadcasting protocols.  
Section 3 defines the problem we want to address and introduces our variable bandwidth broadcasting protocol.  Section 
4 compares its performance to those of extant protocols and Section 5 has our conclusions. 

2.  PREVIOUS WORK  

Earlier video distribution protocols attempted to reduce server bandwidth either by batching together several requests2  
or by accelerating the video playback rate of new requests to let them catch up with previous transmissions3.  
Viswanathan and Imielinski12 proposed in 1996 a better solution.  Their pyramid broadcasting protocol required special 
customer set-top boxes (STBs) (a) capable of receiving data at data rates exceeding the video consumption rate and (b) 
having enough buffer space to store one hour of video data.   Their original proposal has been followed by several more 
recent schemes requiring less server bandwidth to achieve the same customer waiting times.  We will only mention here 
those protocols that are directly relevant to our work.  The reader interested in a more comprehensive review of 
broadcasting protocols for VOD may want to consult reference1. 

The simplest broadcasting protocol is Juhn and Tseng's fast broadcasting (FB) protocol5.  The FB protocol allocates to 
each video k data channels whose bandwidths are all equal to the video consumption rate b.  It then partitions each video 
into 2k – 1 segments, S1 to S2

k-1, of equal duration d.  As Figure 1 indicates, the first channel continuously rebroadcasts 
segment S1, the second channel transmits segments S2 and S3, and the third channel transmits segments S4 to S7.  More 
generally, channel j with 1 ≤ j  ≤ k transmits segments S2

j-1 to S2
j
-1.   

When customers want to watch a video, they wait until the beginning of the next transmission of segment S1.  They then 
start watching that segment while their STB starts downloading data from all other channels.  Hence the maximum 
customer waiting time is equal to the duration of a segment.  Define a slot as a time interval equal to the duration of a 
segment.  To prove the correctness of the FB protocol, we need only to observe that each segment i with 1 ≤ i ≤ 2k-1 is 
rebroadcast at least once every i slot.  Then any client STB starting to receive data from all broadcasting channels will 
always receive all segments on time. 
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Figure 2.  An NPB protocol with three channels 

Channel First Segment Last Segment 

C1 S1 S12 

C2 S13 S42 

C3 S43 S116 

Figure 3.  The first three channels for the FDPB protocol with m = 9 

The new pagoda broadcasting (NPB)7 protocol improves upon the FB protocol by using a more complex segment-to-
channel mapping.  As seen on Figure 2, the NPB protocol can pack nine segments into three channels while the FB pro-
tocol can only pack seven of them.  Hence the segment size will be equal to one ninth of the duration of the video and no 
customer would ever have to wait more than 14 minutes for a two-hour video.   

Neither the FB protocol nor the NPB protocol require customer STBs to wait for any minimum amount of time.  As a 
result, there is no point in requiring customer STBs to start downloading data while customers are still waiting for the 
beginning of the video.  The newer fixed-delay pagoda broadcasting (FDPB) protocol8 requires all users to wait for a 
fixed delay w before watching the video they have selected.  This waiting time is normally a multiple m of the segment 
duration d.  As a result, the FDPB protocol can partition each video into much smaller segments than either FB or PB 
with the same number of channels.  Since these smaller segments can be packed much more effectively into the k 
channels assigned to the video, the FDPB protocol achieves smaller customer waiting times than FB and PB protocols 
with the same number of channels. 

Figure 3 summarizes the segment-to-channel mappings of a FDPB protocol requiring customers to wait for exactly nine 
times the duration of a segment.  This allows the protocol to map 116 segments into three channels and achieve a 
deterministic waiting time of 9/116 of the duration of the video, that is, slightly less than ten minutes for a two-hour 
video.   

3.  THE VBB PROTOCOL 

Our design objectives were straightforward.  First, we wanted to design a flexible broadcasting protocol that could 
increase or decrease the number of channels allocated to a given video without causing any interruption of service and 
without requiring any temporary bandwidth surge.  In other words, the transition between the old and the new segment to 
channel mapping had to be seamless.  We also wanted our protocol to make an efficient use of its bandwidth and achieve 
minimum customer waiting times comparable to those of the most recent broadcasting protocols. 

This second criterion excluded some simple solutions.  Consider for instance the FB protocol described in the previous 
section.  As seen on Figure 4, we could easily collapse its first two channels into a single channel broadcasting segments 
S1, S2 and S3.  This would however triple the customer waiting time, which is not acceptable. 

A better approach is to start with a given number of channels kmin.  We can then split each segment Si into two segments, 
S\1 and Si2, of equal duration d/2 and add an extra channel that will continuously broadcast the half-segment S11.  This 
process can be repeated as many times as needed with each step adding one extra channel and halving the maximum 
customer waiting time. 
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Figure 4.  Collapsing the first two channels of the FB protocol  
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(a) Splitting each segment into two smaller segments 

New Channel S11 S11 S11 S11 S11 S11 S11 S11 

Old First Channel S11 S12 S11 S12 S11 S12 S11 S12 

Old Second Channel S21 S22 S31 S32 SS2211  S22 S31 S32 

Old Third Channel S41 S42 S51 S52 S61 S62  S71 S72 

(b) Adding a new channel exclusively broadcasting S11: redundant 
segment transmissions are represented in gray over white while segments 

that will not always arrive on time are in bold over gray 

New Channel S11 S11 S11 S11 S11 S11 S11 S11 

Old First Channel S21 S12 S21 S12 S21 S12 S21 S12 

Old Second Channel S41 S22 S31 S32 S41 S22 S31 S32 

Old Third Channel S81 S42 S51 S52 S61 S62  S71 S72 

(c) Updating the segment to slot mapping of the protocol 

Figure 5.  Adding an extra channel to the FB protocol 

Figure 5 describes one step of the process for the first three channels of the FB policy.  As we can see, we will have to 
make some adjustments to the segment-to-channel mapping of the protocol.  First, consider the old channel 1.  Like all 
other channels, it is now partitioned into twice as many slots as before.  Fifty percent of these smaller slots are now free, 
as their retransmissions of half-segment S11 are redundant.  Second, some of the new segments will have to be broadcast 
more frequently.  Consider for instance segment S21.  It belonged to the old segment S2, which was rebroadcast once 
every two old slots, that is, once every four of the new slots.  It is now the third segment of the video and has thus to be 
retransmitted once every three new slots.  More generally each and every new segment Si1 will now have to be 
retransmitted at least once every 2i – 1 new slots while each and every new segment Si2 will have to be retransmitted at 
least once every 2i new slots.  This will result in a cascade of new allocations: 

• Segment S21 will now be broadcast by the old channel 1 and occupy the slots that were previously broadcasting 
segment S11. As a result, it will now be rebroadcast once every two new slots. 

• The slots freed by that move will now broadcast segment S41, which will now be rebroadcast once every four slots. 

• The slots previously occupied by segment S41 are now free.  If there was a fourth channel, we could use these free 
slots to broadcast the first segment of that fourth channel, that is segment S81 (represented in bold gray).�



Table 1.  Segment-to-subchannel mapping of the VBB protocol 

Channel Subchannel Segments 

1 1 1 

1 2 
2 

2 4 and 5 

1 3 

2 6 and 7 3 

3 8 and 9 

1 10 to 12 

2 13 to 16 4 

3 17 to 21 

1 22 to 25 

2 26 to 30 

3 31 to 36 

4 37 to 43 

5 

5 44 to 51 

1 52 to 58 

2 59 to 66 

3 67 to 75 

4 76 to 85 

5 86 to 97 

6 98 to 110 

6 

7 111 to 125 

1 126 to 136 

2 137 to 148 

3 149 to 161 

4 162 to 175 

5 176 to 190 

6 191 to 207 

7 208 to 225 

8 226 to 245 

9 246 to 267 

10 268 to 291 

7 

11 292 to 317 
 

More generally the slots that were previously broadcasting the first segment of every channel, that is, segments S11, S21,  
S41, … will now broadcast the first segment of the next channel that is, segments S21, S41,  S61, ….  In other words, the 



lowest numbered segment of each channel will move up one channel and occupy the slots that were previously occupied 
by the lowest numbered segment of that channel.   

This will be a very orderly process that will only involve one segment per channel.  This would not be the case if we 
tried the same approach with the NPB protocol.  First, the NPB protocol broadcasts many more segments at their 
minimum bandwidth than the FB protocol, which means that many more of the split segments would have to be 
reassigned.  Second, the irregular segment-to-slot mappings used by the NPB protocol would make this task more 
complex. 

One possible way to eliminate these segment reassignments would be not to transmit any segment at its minimum 
bandwidth and ensure instead that each segment Si is repeated at least once every i – 1 slots.  This would unfortunately 
reduce the number of segments that can be broadcast over the kmin channels allocated to the video and result in an 
unacceptable increase of the customer waiting time.  We decided instead to build our variable bandwidth broadcasting 
protocol around a more efficient segment-to-slot mapping that only required the reallocation of five segments all located 
in the first three channels assigned to the video.  

Table 1 describes in some detail this mapping for the first seven channels.  As one can see, each of these seven channels 
is partitioned into a variable number sj of subchannels.  We will allocate to each subchannel an equal number of equally 
spaced slots of the channel it belongs to.  Hence the first subchannel of channel 2 will occupy all even slots of that 
channel while the other subchannel will have all odd slots. More generally, subchannel x of channel j will contain all 
slots z such that z mod sj = x – 1, that is 1/sj of the slots of channel j.  

The segment-to slot mappings of the first three channels are identical to these of a NPB protocol with three channels.  As 
a result, segments S1, S2, S3, S4 and S6 are broadcast at their minimum broadcasting frequency, that is, once every slot for 
S1, once every two slots for S2, once every three slots for S3 and so forth.  The remaining channels are mapped according 
to a scheme similar to that used by the FDPB8 protocol. 

Consider a channel j with j ≥ 4 and assume that the lowest numbered segment to be broadcast by the channel is segment 
Si.  This channel will be partitioned into )round( is j = subchannels that will be successively filled with the segments 
assigned to that channel, starting with subchannel 1 and ending with subchannel sj. 

While other VOD broadcasting protocols try to find the tightest segment-to-slot mapping guaranteeing that all segments 
will always arrive on time, the VBB protocol also ensures that adding an extra channel will never result in a segment 
reassignment in any channel j with j ≥ 4.  To meet this new requirement, each Si with i ≥ 10 will be broadcast at least 
once every i – 1 slots instead of once every i slots. 

We will enforce this last condition by limiting the number of segments broadcast by each subchannel.  Consider a 
channel j having sj subchannel and let Si be the lowest numbered segment to be broadcast by subchannel l.  To ensure 
that Si will always be repeated at least once every i – 1 slots, the number of segments nl repeated by subchannel l will 
always satisfy the inequality nl < i/sj. 

Consider for instance the segment-to-slot mapping of the fourth channel.  Since S10 is the lowest numbered segment to be 
broadcast by that channel and 310 ≈ , we will partition it into 3 subchannels, each having one third of the channel 
slots.  The first subchannel will continuously repeat segments S10 to S12 ensuring that each segment will be repeated once 
every 9 slots, the second subchannel will do the same with segments S13 to S16 ensuring that each segment will be 
repeated once every 12 slots and the third subchannel will handle segments S17 to S21 ensuring that each segment will be 
repeated once every 15 slots. 

Let us consider now what will happen when we add an extra channel and split each segment Si into two smaller segments 
Si1 and Si2.  Since all segments Si with i ≥ 10 are broadcast at least once every i – 1 slots, the segment-to-slot mappings of 
the channels broadcasting these segments will not be affected by the process.  We only need to consider the changes to 
be brought to the first three channels. 

As Figure 6 shows, the sole segments whose mappings will be modified are segments S11, S21, S31, S41 and S61: 

• The new channel will continuously broadcast segment S11. 



First Channel S11 S12 S11 S12 S11 S12 S11 S12 S11 S12 S11 S12 

Second Channel S21 S22 S41 S42 S21 S22 S51 S52 S21 S22 S41 S42 

Third Channel S31 S32 S61 S62 S81 S82  S31 S32 S71 S72 S91 S89  

(a) Splitting each segment into two smaller segments 

New Channel S11 S11 S11 S11 S11 S11 S11 S11 S11 S11 S11 S11 

Old First Channel S11 S12 S11 S12 S11 S12 S11 S12 S11 S12 S11 S12 

Old Second Channel S21 S22 S41 S42 S21 S22 S51 S52 S21 S22 S41 S42 

Old Third Channel S31 S32 S61 S62 S81 S82  S31 S32 S71 S72 S91 S92  

(b) Adding a new channel exclusively broadcasting S11: redundant 
segment transmissions are represented in gray over white while segments 

that will not always arrive on time are in bold over gray 

New Channel S11 S11 S11 S11 S11 S11 S11 S11 S11 S11 S11 S11 

Old First Channel S21 S12 S21 S12 S21 S12 S21 S12 S21 S12 S21 S12 

Old Second Channel S31 S22 S61 S42 S31 S22 S51 S52 S31 S22 S61 S42 

Old Third Channel S41 S32 — S62 S81 S82  S41 S32 S71 S72 S91 S92  

(c) Updating the segment to slot mapping of the protocol 

Figure 6.  Adding an extra channel to the VBB protocol. 

• The slots that segment S11 previously occupied in the old first segment will be reassigned to segment S21, which will 
now be rebroadcast once every two slots. 

• The slots that segment S21 previously occupied in the old second segment will be reassigned to segment S31, which 
will now be rebroadcast once every four slots. 

• The slots that segment S31 previously occupied in the old third segment will be reassigned to segment S41, which will 
now be rebroadcast once every six slots. 

• The slots that segment S41 previously occupied in the old second segment will be reassigned to segment S61, which 
will now be rebroadcast once every eight slots. 

• The slots that segment S61 previously occupied in the old third segment will remain free. 

Note that the resulting segment-to-slot mapping will not contain any instance of a segment Si with i > 1 that is not 
broadcast at least once every i – 1 slots.  Hence further additions of extra channels will not require the modifications of 
the mappings of any segment but segment S11.   

A great advantage of this property is that customers who request the video while a new channel is being added will see 
much more quickly the new segment-to-slot mapping and will have their maximum waiting time reduced much faster. 
Channel removals will also take less time. 

Setting up the protocol for a given video will require specifying the minimum number of channels kmin that will be 
permanently assigned to the video.  For instance, selecting kmin = 4 will mean that video will always be broadcast on at 
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Figure 7.  How the VBB protocol compares with other broadcasting protocols 

least 4 channels and partitioned into at least 21 segments.  As a consequence, the maximum customer wait will be equal 
to 1/21 of the video duration, that is, slightly less than six minutes for a two-hour video.  Each extra channel added to the 
four base channel will halve this maximum waiting time.  Hence we will need three additional channels to bring this 
maximum waiting time below 45 seconds. 

There is a clear tradeoff in the selection of the best kmin for a video: while low values of kmin will give the service 
provider more flexibility in assigning channels to the video, mappings based on higher values of kmin will use the 
available bandwidth more efficiently.  Going back to our previous example, we can see that selecting kmin = 6 would 
allow us to partition the video in at least 125 segments and achieve a waiting time of slightly less than a minute for a 
two-hour video with only six channels. 

Let us briefly describe the procedure for taking away a channel.  Two cases have to be considered.  First, if the video has 
two or more channels over its minimum channel allocation kmin, we can always remove the channel transmitting the first 
segment of the video without affecting the segment-to-slot mappings of the other channels.  Second, if the video only has 
one additional channel above its minimum channel allocation, we will need to proceed by stages: 

a) The server will stop first scheduling instances of segment S11in the slots of the first channel that do not correspond 
to an instance of S21 in the second channel.  This will immediately increase the maximum customer waiting time to 
two slots. 

b) Eight slots after that, the STB will move its transmissions of segment S61 to the free slots of the fourth channel; as a 
result, segment S61 will now be retransmitted every twelve slots. 

c) When this is done, the STB will move its transmissions of segment S41 to the slots of the third channel that were 
previously transmitting segment S61; as a result, segment S41 will now be retransmitted every eight slots. 

d) The STB will move its transmissions of segment S31 to the slots of the fourth channel that were previously 
transmitting segment S41; as a result, segment S31 will now be retransmitted every six slots. 

e) The STB will move its transmissions of segment S21 to the slots of the third channel that were previously 
transmitting segment S31; as a result, segment S21 will now be retransmitted every four slots. 



f) The STB will move its transmissions of segment S11 to the slots of the second channel that were previously 
transmitting segment S21. 

g) The STB will then release the first channel of the video. 

3. PERFORM ANCE ANALYSIS 

Figure 7 compares the maximum customer waiting times achieved of our VBB protocol for k varying between four and 
seven channels with those achieved by three other VOD broadcasting protocols.  The protocols against which we 
compared the bandwidth requirements of the VBB protocol are: 

a) the fast broadcasting (FB) protocol, 

b) the new pagoda broadcasting (NPB) protocol, and  

c) a fixed-delay pagoda broadcasting (FDPB) with m = 3. 

All waiting times are expressed as fractions of the video duration D.  So, a value of 0.05 would correspond to a 
maximum waiting time of six minutes for a two-hour video. 

As expected, the performance of the VBB protocol is strongly affected by its minimum bandwidth parameter kmin.  
Lower values of kmin always result in longer waiting times for the same video bandwidth.  A VBB protocol with kmin = 3 
only achieves waiting times slightly below those achieved by the FB protocol while VBB protocols with kmin > 3 achieve 
better waiting times.  In particular, selecting kmin equal to 6 will bring the performance of the VBB protocol very close to 
that of the NPB protocol. 

We can also see that the FDPB protocol always produces the lowest maximum customer waiting time.  This is because 
this protocol requires all customers to wait for the same fixed delay before watching the video.  Hence its maximum and 
its average customer waiting time are the same.  We compared maximum waiting times because they matter the most to 
customers.  A comparison of average waiting times would have led to a different ranking of the protocols. 

Another issue to be considered is how the protocol would fare against an optimal protocol achieving the minimum 
waiting time for a given server bandwidth.  To compute this minimum, let us consider a video of duration D being 
broadcast in such a way that all customers requesting the video wait for w time units before starting the video.  Let ∆t 
represent a small time interval starting at a location t within the video.  To avoid STB underflow, the contents of this 
time  

interval must be broadcast at a minimum bandwidth )/( wtb +  where b is the video consumption rate.  Summing over all 
intervals as ∆t approaches 0, we see that the bandwidth required to transmit the video is given by 

w

wD
bwwDbdt
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bD +−=−+=
+� ln)ln)(ln(

0
 

Assume now that we want this bandwidth to be equal to a fixed multiple k of the video consumption rate b.  The waiting 
will then be the solution of the equation  

kb
w

wD
b =+− ln  

and we will have 

 
1−

=
ke

D
w  (1) 

Figure 8 compares the maximum waiting times achieved by our protocol with those achieved by the optimal protocol.  
While the relative gap between the waiting times achieved by two protocols increase with k, their absolute differences 
are also becoming less relevant. 
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Figure 8.  How the VBB protocol compares with the theoretical optimum 

A last aspect of the performance of a broadcasting protocol is its maximum disk storage cost.  To derive this, we will 
assume that the STB uses an eager fetch policy and always downloads the first instance of any new segment even when 
the segments will be repeated before being actually viewed by the customer.   

To compute the maximum storage, we observe that the STB will receive data from the video server at a variable rate 
while the customer will consume the data at a fixed rate.  Moreover the rate at which the STB will receive data from the 
server is a decreasing function of time as the STB will download data from less and less channels as the video 
progresses. The maximum storage requirement will occur when the STB stops receiving more data than it is consuming, 
which happens when the STB is done with the next to last channel.  At that time, the STB will have in its buffer: 

a) all the segments of the last channel it has already received and 

b) the segments of the next to last channel that have not yet been viewed by the customer. 

By adding these two terms, we obtain the maximum disk storage cost of the protocol.  Consider for instance the case of a 
VBB protocol with k = kmin = 7.  As we can see from Table 1, the protocol will broadcast 317 segments over its 7 
channels and segment S125 will be the last segment broadcast by channel 6.  Observing that this last segment is broadcast 
exactly once every 105 slots, we know that the protocol maximum disk storage cost will be 105 + (125 – 105) = 125 
segments, that is 39.4 percent of the video.  We found that this percentage remained rather stable when k varied between 
4 and 8 channels as the VBB protocol never required the customer STB to hold more than 43 percent of the video in its 
local buffer.  This is slightly less than the storage costs of most other protocols, which typically require the STB to hold 
up to 50 percent of each video in its local buffer. 

4. CONCLUSIONS 

We have presented a first broadcasting protocol that can alter the number of channels allocated to a given video without 
inconveniencing the viewer and without causing any temporary bandwidth surge.  Our variable bandwidth broadcasting 
(VBB) protocol assigns to each video a minimum number kmin of channels whose bandwidths are all equal to the video 
consumption rate.  we have seen how we could assign additional channels  to the video at any time to reduce the 
customer waiting time and retaken later to free server bandwidth.  We found the cost of this additional flexibility to be 
quite reasonable as the bandwidth requirements of our VBB fall between those of the fast broadcasting protocol and the 



new pagoda broadcasting protocol.  In addition, our VBB protocol never requires the customer STB to hold more than 
44 percent of the video in its local buffer, which is slightly less than most other broadcasting protocols. 

Several extensions of the VBB protocol can be contemplated.  The most attractive one is a dynamic version of the 
protocol that would skip segment broadcasts that are not needed by any incoming requests.  Another one is to develop a 
variant of the protocol that would never require the customer STB to receive data from more than two channels at the 
same time. 
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