
A var iable bandwidth broadcasting protocol for video-on-demand

Jehan-François Pârisa1, Darrell D. E. Longb2
aDepartment of Computer Science, University of Houston, Houston, TX 77204-3010

bDepartment of Computer Science, University of California, Santa Cruz, CA 95064

ABSTRACT

We present the first broadcasting protocol that can alter the number of channels allocated to a given video without
inconveniencing the viewer and without causing any temporary bandwidth surge. Our variable bandwidth broadcasting
(VBB) protocol assigns to each video a minimum number of channels whose bandwidths are all equal to the video
consumption rate. Additional channels can be assigned to the video at any time to reduce the customer waiting time or
retaken to free server bandwidth. The cost of this additional flexibility is quite reasonable as the bandwidth requirements
of our VBB fall between those of the fast broadcasting protocol and the new pagoda broadcasting protocol.

1. INTRODUCTION

Broadcasting protocols offer the best solution for the successful deployment of metropolitan video-on-demand (VOD)
services because they provide a way to distribute very popular videos in an efficient fashion and these so-called “hot”
videos are expected to account for the majority of customer requests. Rather than reacting to individual viewer requests,
broadcasting protocols distribute the contents of videos according to a fixed schedule guaranteeing that all customers
will receive these contents on time. As a result, the number of customers watching a given video does not affect the
server workload.

All recent VOD broadcasting protocols derive in some way from Viswanathan and Imielinski’s pyramid broadcasting
protocol12 and, like it, they assume that most, if not all, users will watch each video in a strictly sequential fashion. They
also require customers to be connected to the service through a “smart” set-top box (STB) capable of (a) receiving data
at rates exceeding the video consumption rate and (b) storing locally the video data that arrive out of sequence. In the
current state of storage technology, this implies having a disk drive in each STB, a device already present in the so-
called digital VCR’s offered by TiVo10, Replay9 and Ultimate TV11.

We can classify VOD broadcasting protocols into two broad groups according to the way they broadcast the various
segments of each video. Harmonic broadcasting protocols4, 6 assign a separate data stream to each segment of a video.
The very low bandwidth requirements of these protocols result from the fact that they transmit each segment at the
minimum bandwidth required to ensure its on-time delivery to a viewer watching the video in a sequential fashion. The
second group of broadcasting protocols is comprised of protocols that broadcast each video over a fixed number k of
data channels whose bandwidths are normally equal to the video consumption rate b. As we will see, they achieve their
bandwidth savings through the use of time division multiplexing.

Research on VOD broadcasting protocols has been focused on two main axes, namely, (a) designing protocols that
require less bandwidth to achieve the same customer waiting time, and (b) designing protocols that switch to a reactive
approach when the number of user requests is too low to justify maintaining a deterministic broadcasting schedule. So

1 paris@cs.uh.edu; supported in part by the Texas Advanced Research Program under grant 003652-0124-1999 and the National
Science Foundation under grant CCR-9988390.
2 darrell@cse.ucsc.edu; supported in part by the National Science Foundation under grant CCR-9988363.

First Channel S1 S1 S1 S1

Second Channel S2 S3 S2 S3

Third Channel S4 S5 S6 S7

Figure 1. The first three channels for the FB protocol

far,�scant attention has been given to the problem of dynamically altering the bandwidth allocated to a popular video to
reflect changes in bandwidth availability. For instance, the operator of a video service might want to reduce the number
of channels allocated to some videos to make space for a new offering or to increase the number of channels allocated to
a video when extra bandwidth is available. Decisions of this kind are analogous to the movie scheduling decisions made
daily by managers of theater multiplexes: they may want sometimes to show the same movie on two or three different
screens or have at other times two movies shown at alternate times in the same auditorium.

We present a broadcasting protocol that can alter the number of channels allocated to a given video without
inconveniencing any customer and without causing any temporary bandwidth surge. Our variable bandwidth
broadcasting (VBB) protocol assigns to each video a minimum number kmin of channels whose bandwidths are all equal
to the video consumption rate b. Additional channels can be assigned to the video at any time in order to reduce the
customer waiting time or withdrawn in order to free server bandwidth. The cost of this additional flexibility is quite
reasonable as the bandwidth requirements of our VBB fall between those of the fast broadcasting protocol5 and the new
pagoda broadcasting protocol7.

The remainder of the paper is organized as follows. Section 2 reviews relevant previous work on broadcasting protocols.
Section 3 defines the problem we want to address and introduces our variable bandwidth broadcasting protocol. Section
4 compares its performance to those of extant protocols and Section 5 has our conclusions.

2. PREVIOUS WORK

Earlier video distribution protocols attempted to reduce server bandwidth either by batching together several requests2
or by accelerating the video playback rate of new requests to let them catch up with previous transmissions3.
Viswanathan and Imielinski12 proposed in 1996 a better solution. Their pyramid broadcasting protocol required special
customer set-top boxes (STBs) (a) capable of receiving data at data rates exceeding the video consumption rate and (b)
having enough buffer space to store one hour of video data. Their original proposal has been followed by several more
recent schemes requiring less server bandwidth to achieve the same customer waiting times. We will only mention here
those protocols that are directly relevant to our work. The reader interested in a more comprehensive review of
broadcasting protocols for VOD may want to consult reference1.

The simplest broadcasting protocol is Juhn and Tseng's fast broadcasting (FB) protocol5. The FB protocol allocates to
each video k data channels whose bandwidths are all equal to the video consumption rate b. It then partitions each video
into 2k – 1 segments, S1 to S2

k-1, of equal duration d. As Figure 1 indicates, the first channel continuously rebroadcasts
segment S1, the second channel transmits segments S2 and S3, and the third channel transmits segments S4 to S7. More
generally, channel j with 1 ≤ j ≤ k transmits segments S2

j-1 to S2
j
-1.

When customers want to watch a video, they wait until the beginning of the next transmission of segment S1. They then
start watching that segment while their STB starts downloading data from all other channels. Hence the maximum
customer waiting time is equal to the duration of a segment. Define a slot as a time interval equal to the duration of a
segment. To prove the correctness of the FB protocol, we need only to observe that each segment i with 1 ≤ i ≤ 2k-1 is
rebroadcast at least once every i slot. Then any client STB starting to receive data from all broadcasting channels will
always receive all segments on time.

First Channel S1 S1 S1 S1 S1 S1

Second Channel S2 S4 S2 S5 S2 S4

Third Channel S3 S6 S8 S3 S7 S9

Figure 2. An NPB protocol with three channels

Channel First Segment Last Segment

C1 S1 S12

C2 S13 S42

C3 S43 S116

Figure 3. The first three channels for the FDPB protocol with m = 9

The new pagoda broadcasting (NPB)7 protocol improves upon the FB protocol by using a more complex segment-to-
channel mapping. As seen on Figure 2, the NPB protocol can pack nine segments into three channels while the FB pro-
tocol can only pack seven of them. Hence the segment size will be equal to one ninth of the duration of the video and no
customer would ever have to wait more than 14 minutes for a two-hour video.

Neither the FB protocol nor the NPB protocol require customer STBs to wait for any minimum amount of time. As a
result, there is no point in requiring customer STBs to start downloading data while customers are still waiting for the
beginning of the video. The newer fixed-delay pagoda broadcasting (FDPB) protocol8 requires all users to wait for a
fixed delay w before watching the video they have selected. This waiting time is normally a multiple m of the segment
duration d. As a result, the FDPB protocol can partition each video into much smaller segments than either FB or PB
with the same number of channels. Since these smaller segments can be packed much more effectively into the k
channels assigned to the video, the FDPB protocol achieves smaller customer waiting times than FB and PB protocols
with the same number of channels.

Figure 3 summarizes the segment-to-channel mappings of a FDPB protocol requiring customers to wait for exactly nine
times the duration of a segment. This allows the protocol to map 116 segments into three channels and achieve a
deterministic waiting time of 9/116 of the duration of the video, that is, slightly less than ten minutes for a two-hour
video.

3. THE VBB PROTOCOL

Our design objectives were straightforward. First, we wanted to design a flexible broadcasting protocol that could
increase or decrease the number of channels allocated to a given video without causing any interruption of service and
without requiring any temporary bandwidth surge. In other words, the transition between the old and the new segment to
channel mapping had to be seamless. We also wanted our protocol to make an efficient use of its bandwidth and achieve
minimum customer waiting times comparable to those of the most recent broadcasting protocols.

This second criterion excluded some simple solutions. Consider for instance the FB protocol described in the previous
section. As seen on Figure 4, we could easily collapse its first two channels into a single channel broadcasting segments
S1, S2 and S3. This would however triple the customer waiting time, which is not acceptable.

A better approach is to start with a given number of channels kmin. We can then split each segment Si into two segments,
S\1 and Si2, of equal duration d/2 and add an extra channel that will continuously broadcast the half-segment S11. This
process can be repeated as many times as needed with each step adding one extra channel and halving the maximum
customer waiting time.

Old Second Channel S1 S2 S3 S1

Old Third Channel S4 S5 S6 S7

Figure 4. Collapsing the first two channels of the FB protocol

First Channel S11 S12 S11 S12 S11 S12 S11 S12

Second Channel S21 S22 S31 S32 S21 S22 S31 S32

Third Channel S41 S42 S51 S52 S61 S62 S71 S72

(a) Splitting each segment into two smaller segments

New Channel S11 S11 S11 S11 S11 S11 S11 S11

Old First Channel S11 S12 S11 S12 S11 S12 S11 S12

Old Second Channel S21 S22 S31 S32 SS2211 S22 S31 S32

Old Third Channel S41 S42 S51 S52 S61 S62 S71 S72

(b) Adding a new channel exclusively broadcasting S11: redundant
segment transmissions are represented in gray over white while segments

that will not always arrive on time are in bold over gray

New Channel S11 S11 S11 S11 S11 S11 S11 S11

Old First Channel S21 S12 S21 S12 S21 S12 S21 S12

Old Second Channel S41 S22 S31 S32 S41 S22 S31 S32

Old Third Channel S81 S42 S51 S52 S61 S62 S71 S72

(c) Updating the segment to slot mapping of the protocol

Figure 5. Adding an extra channel to the FB protocol

Figure 5 describes one step of the process for the first three channels of the FB policy. As we can see, we will have to
make some adjustments to the segment-to-channel mapping of the protocol. First, consider the old channel 1. Like all
other channels, it is now partitioned into twice as many slots as before. Fifty percent of these smaller slots are now free,
as their retransmissions of half-segment S11 are redundant. Second, some of the new segments will have to be broadcast
more frequently. Consider for instance segment S21. It belonged to the old segment S2, which was rebroadcast once
every two old slots, that is, once every four of the new slots. It is now the third segment of the video and has thus to be
retransmitted once every three new slots. More generally each and every new segment Si1 will now have to be
retransmitted at least once every 2i – 1 new slots while each and every new segment Si2 will have to be retransmitted at
least once every 2i new slots. This will result in a cascade of new allocations:

• Segment S21 will now be broadcast by the old channel 1 and occupy the slots that were previously broadcasting
segment S11. As a result, it will now be rebroadcast once every two new slots.

• The slots freed by that move will now broadcast segment S41, which will now be rebroadcast once every four slots.

• The slots previously occupied by segment S41 are now free. If there was a fourth channel, we could use these free
slots to broadcast the first segment of that fourth channel, that is segment S81 (represented in bold gray).�

Table 1. Segment-to-subchannel mapping of the VBB protocol

Channel Subchannel Segments

1 1 1

1 2
2

2 4 and 5

1 3

2 6 and 7 3

3 8 and 9

1 10 to 12

2 13 to 16 4

3 17 to 21

1 22 to 25

2 26 to 30

3 31 to 36

4 37 to 43

5

5 44 to 51

1 52 to 58

2 59 to 66

3 67 to 75

4 76 to 85

5 86 to 97

6 98 to 110

6

7 111 to 125

1 126 to 136

2 137 to 148

3 149 to 161

4 162 to 175

5 176 to 190

6 191 to 207

7 208 to 225

8 226 to 245

9 246 to 267

10 268 to 291

7

11 292 to 317

More generally the slots that were previously broadcasting the first segment of every channel, that is, segments S11, S21,
S41, … will now broadcast the first segment of the next channel that is, segments S21, S41, S61, …. In other words, the

lowest numbered segment of each channel will move up one channel and occupy the slots that were previously occupied
by the lowest numbered segment of that channel.

This will be a very orderly process that will only involve one segment per channel. This would not be the case if we
tried the same approach with the NPB protocol. First, the NPB protocol broadcasts many more segments at their
minimum bandwidth than the FB protocol, which means that many more of the split segments would have to be
reassigned. Second, the irregular segment-to-slot mappings used by the NPB protocol would make this task more
complex.

One possible way to eliminate these segment reassignments would be not to transmit any segment at its minimum
bandwidth and ensure instead that each segment Si is repeated at least once every i – 1 slots. This would unfortunately
reduce the number of segments that can be broadcast over the kmin channels allocated to the video and result in an
unacceptable increase of the customer waiting time. We decided instead to build our variable bandwidth broadcasting
protocol around a more efficient segment-to-slot mapping that only required the reallocation of five segments all located
in the first three channels assigned to the video.

Table 1 describes in some detail this mapping for the first seven channels. As one can see, each of these seven channels
is partitioned into a variable number sj of subchannels. We will allocate to each subchannel an equal number of equally
spaced slots of the channel it belongs to. Hence the first subchannel of channel 2 will occupy all even slots of that
channel while the other subchannel will have all odd slots. More generally, subchannel x of channel j will contain all
slots z such that z mod sj = x – 1, that is 1/sj of the slots of channel j.

The segment-to slot mappings of the first three channels are identical to these of a NPB protocol with three channels. As
a result, segments S1, S2, S3, S4 and S6 are broadcast at their minimum broadcasting frequency, that is, once every slot for
S1, once every two slots for S2, once every three slots for S3 and so forth. The remaining channels are mapped according
to a scheme similar to that used by the FDPB8 protocol.

Consider a channel j with j ≥ 4 and assume that the lowest numbered segment to be broadcast by the channel is segment
Si. This channel will be partitioned into)round(is j = subchannels that will be successively filled with the segments
assigned to that channel, starting with subchannel 1 and ending with subchannel sj.

While other VOD broadcasting protocols try to find the tightest segment-to-slot mapping guaranteeing that all segments
will always arrive on time, the VBB protocol also ensures that adding an extra channel will never result in a segment
reassignment in any channel j with j ≥ 4. To meet this new requirement, each Si with i ≥ 10 will be broadcast at least
once every i – 1 slots instead of once every i slots.

We will enforce this last condition by limiting the number of segments broadcast by each subchannel. Consider a
channel j having sj subchannel and let Si be the lowest numbered segment to be broadcast by subchannel l. To ensure
that Si will always be repeated at least once every i – 1 slots, the number of segments nl repeated by subchannel l will
always satisfy the inequality nl < i/sj.

Consider for instance the segment-to-slot mapping of the fourth channel. Since S10 is the lowest numbered segment to be
broadcast by that channel and 310 ≈ , we will partition it into 3 subchannels, each having one third of the channel
slots. The first subchannel will continuously repeat segments S10 to S12 ensuring that each segment will be repeated once
every 9 slots, the second subchannel will do the same with segments S13 to S16 ensuring that each segment will be
repeated once every 12 slots and the third subchannel will handle segments S17 to S21 ensuring that each segment will be
repeated once every 15 slots.

Let us consider now what will happen when we add an extra channel and split each segment Si into two smaller segments
Si1 and Si2. Since all segments Si with i ≥ 10 are broadcast at least once every i – 1 slots, the segment-to-slot mappings of
the channels broadcasting these segments will not be affected by the process. We only need to consider the changes to
be brought to the first three channels.

As Figure 6 shows, the sole segments whose mappings will be modified are segments S11, S21, S31, S41 and S61:

• The new channel will continuously broadcast segment S11.

First Channel S11 S12 S11 S12 S11 S12 S11 S12 S11 S12 S11 S12

Second Channel S21 S22 S41 S42 S21 S22 S51 S52 S21 S22 S41 S42

Third Channel S31 S32 S61 S62 S81 S82 S31 S32 S71 S72 S91 S89

(a) Splitting each segment into two smaller segments

New Channel S11 S11 S11 S11 S11 S11 S11 S11 S11 S11 S11 S11

Old First Channel S11 S12 S11 S12 S11 S12 S11 S12 S11 S12 S11 S12

Old Second Channel S21 S22 S41 S42 S21 S22 S51 S52 S21 S22 S41 S42

Old Third Channel S31 S32 S61 S62 S81 S82 S31 S32 S71 S72 S91 S92

(b) Adding a new channel exclusively broadcasting S11: redundant
segment transmissions are represented in gray over white while segments

that will not always arrive on time are in bold over gray

New Channel S11 S11 S11 S11 S11 S11 S11 S11 S11 S11 S11 S11

Old First Channel S21 S12 S21 S12 S21 S12 S21 S12 S21 S12 S21 S12

Old Second Channel S31 S22 S61 S42 S31 S22 S51 S52 S31 S22 S61 S42

Old Third Channel S41 S32 — S62 S81 S82 S41 S32 S71 S72 S91 S92

(c) Updating the segment to slot mapping of the protocol

Figure 6. Adding an extra channel to the VBB protocol.

• The slots that segment S11 previously occupied in the old first segment will be reassigned to segment S21, which will
now be rebroadcast once every two slots.

• The slots that segment S21 previously occupied in the old second segment will be reassigned to segment S31, which
will now be rebroadcast once every four slots.

• The slots that segment S31 previously occupied in the old third segment will be reassigned to segment S41, which will
now be rebroadcast once every six slots.

• The slots that segment S41 previously occupied in the old second segment will be reassigned to segment S61, which
will now be rebroadcast once every eight slots.

• The slots that segment S61 previously occupied in the old third segment will remain free.

Note that the resulting segment-to-slot mapping will not contain any instance of a segment Si with i > 1 that is not
broadcast at least once every i – 1 slots. Hence further additions of extra channels will not require the modifications of
the mappings of any segment but segment S11.

A great advantage of this property is that customers who request the video while a new channel is being added will see
much more quickly the new segment-to-slot mapping and will have their maximum waiting time reduced much faster.
Channel removals will also take less time.

Setting up the protocol for a given video will require specifying the minimum number of channels kmin that will be
permanently assigned to the video. For instance, selecting kmin = 4 will mean that video will always be broadcast on at

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

3 4 5 6 7

Bandwidth (c hannels)

W
ai

ti
n

g
 t

im
e

as
 f

ra
ct

io
n

 o
f

vi
d

eo
 d

u
ra

ti
o

n

Kmin=3

Kmin=4

Kmin=5

Kmin=6
NPB

Figure 7. How the VBB protocol compares with other broadcasting protocols

least 4 channels and partitioned into at least 21 segments. As a consequence, the maximum customer wait will be equal
to 1/21 of the video duration, that is, slightly less than six minutes for a two-hour video. Each extra channel added to the
four base channel will halve this maximum waiting time. Hence we will need three additional channels to bring this
maximum waiting time below 45 seconds.

There is a clear tradeoff in the selection of the best kmin for a video: while low values of kmin will give the service
provider more flexibility in assigning channels to the video, mappings based on higher values of kmin will use the
available bandwidth more efficiently. Going back to our previous example, we can see that selecting kmin = 6 would
allow us to partition the video in at least 125 segments and achieve a waiting time of slightly less than a minute for a
two-hour video with only six channels.

Let us briefly describe the procedure for taking away a channel. Two cases have to be considered. First, if the video has
two or more channels over its minimum channel allocation kmin, we can always remove the channel transmitting the first
segment of the video without affecting the segment-to-slot mappings of the other channels. Second, if the video only has
one additional channel above its minimum channel allocation, we will need to proceed by stages:

a) The server will stop first scheduling instances of segment S11in the slots of the first channel that do not correspond
to an instance of S21 in the second channel. This will immediately increase the maximum customer waiting time to
two slots.

b) Eight slots after that, the STB will move its transmissions of segment S61 to the free slots of the fourth channel; as a
result, segment S61 will now be retransmitted every twelve slots.

c) When this is done, the STB will move its transmissions of segment S41 to the slots of the third channel that were
previously transmitting segment S61; as a result, segment S41 will now be retransmitted every eight slots.

d) The STB will move its transmissions of segment S31 to the slots of the fourth channel that were previously
transmitting segment S41; as a result, segment S31 will now be retransmitted every six slots.

e) The STB will move its transmissions of segment S21 to the slots of the third channel that were previously
transmitting segment S31; as a result, segment S21 will now be retransmitted every four slots.

f) The STB will move its transmissions of segment S11 to the slots of the second channel that were previously
transmitting segment S21.

g) The STB will then release the first channel of the video.

3. PERFORM ANCE ANALYSIS

Figure 7 compares the maximum customer waiting times achieved of our VBB protocol for k varying between four and
seven channels with those achieved by three other VOD broadcasting protocols. The protocols against which we
compared the bandwidth requirements of the VBB protocol are:

a) the fast broadcasting (FB) protocol,

b) the new pagoda broadcasting (NPB) protocol, and

c) a fixed-delay pagoda broadcasting (FDPB) with m = 3.

All waiting times are expressed as fractions of the video duration D. So, a value of 0.05 would correspond to a
maximum waiting time of six minutes for a two-hour video.

As expected, the performance of the VBB protocol is strongly affected by its minimum bandwidth parameter kmin.
Lower values of kmin always result in longer waiting times for the same video bandwidth. A VBB protocol with kmin = 3
only achieves waiting times slightly below those achieved by the FB protocol while VBB protocols with kmin > 3 achieve
better waiting times. In particular, selecting kmin equal to 6 will bring the performance of the VBB protocol very close to
that of the NPB protocol.

We can also see that the FDPB protocol always produces the lowest maximum customer waiting time. This is because
this protocol requires all customers to wait for the same fixed delay before watching the video. Hence its maximum and
its average customer waiting time are the same. We compared maximum waiting times because they matter the most to
customers. A comparison of average waiting times would have led to a different ranking of the protocols.

Another issue to be considered is how the protocol would fare against an optimal protocol achieving the minimum
waiting time for a given server bandwidth. To compute this minimum, let us consider a video of duration D being
broadcast in such a way that all customers requesting the video wait for w time units before starting the video. Let ∆t
represent a small time interval starting at a location t within the video. To avoid STB underflow, the contents of this
time

interval must be broadcast at a minimum bandwidth)/(wtb + where b is the video consumption rate. Summing over all
intervals as ∆t approaches 0, we see that the bandwidth required to transmit the video is given by

w

wD
bwwDbdt

wt

bD +−=−+=
+� ln)ln)(ln(

0

Assume now that we want this bandwidth to be equal to a fixed multiple k of the video consumption rate b. The waiting
will then be the solution of the equation

kb
w

wD
b =+− ln

and we will have

1−

=
ke

D
w (1)

Figure 8 compares the maximum waiting times achieved by our protocol with those achieved by the optimal protocol.
While the relative gap between the waiting times achieved by two protocols increase with k, their absolute differences
are also becoming less relevant.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

3 4 5 6 7

Bandwidth (channels)

W
ai

ti
n

g
 t

im
e

as
 f

ra
ct

io
n

 o
f

vi
d

eo
 d

u
ra

ti
o

n

Kmin=3

Kmin=4

Kmin=5

Kmin=6
Optimum

Figure 8. How the VBB protocol compares with the theoretical optimum

A last aspect of the performance of a broadcasting protocol is its maximum disk storage cost. To derive this, we will
assume that the STB uses an eager fetch policy and always downloads the first instance of any new segment even when
the segments will be repeated before being actually viewed by the customer.

To compute the maximum storage, we observe that the STB will receive data from the video server at a variable rate
while the customer will consume the data at a fixed rate. Moreover the rate at which the STB will receive data from the
server is a decreasing function of time as the STB will download data from less and less channels as the video
progresses. The maximum storage requirement will occur when the STB stops receiving more data than it is consuming,
which happens when the STB is done with the next to last channel. At that time, the STB will have in its buffer:

a) all the segments of the last channel it has already received and

b) the segments of the next to last channel that have not yet been viewed by the customer.

By adding these two terms, we obtain the maximum disk storage cost of the protocol. Consider for instance the case of a
VBB protocol with k = kmin = 7. As we can see from Table 1, the protocol will broadcast 317 segments over its 7
channels and segment S125 will be the last segment broadcast by channel 6. Observing that this last segment is broadcast
exactly once every 105 slots, we know that the protocol maximum disk storage cost will be 105 + (125 – 105) = 125
segments, that is 39.4 percent of the video. We found that this percentage remained rather stable when k varied between
4 and 8 channels as the VBB protocol never required the customer STB to hold more than 43 percent of the video in its
local buffer. This is slightly less than the storage costs of most other protocols, which typically require the STB to hold
up to 50 percent of each video in its local buffer.

4. CONCLUSIONS

We have presented a first broadcasting protocol that can alter the number of channels allocated to a given video without
inconveniencing the viewer and without causing any temporary bandwidth surge. Our variable bandwidth broadcasting
(VBB) protocol assigns to each video a minimum number kmin of channels whose bandwidths are all equal to the video
consumption rate. we have seen how we could assign additional channels to the video at any time to reduce the
customer waiting time and retaken later to free server bandwidth. We found the cost of this additional flexibility to be
quite reasonable as the bandwidth requirements of our VBB fall between those of the fast broadcasting protocol and the

new pagoda broadcasting protocol. In addition, our VBB protocol never requires the customer STB to hold more than
44 percent of the video in its local buffer, which is slightly less than most other broadcasting protocols.

Several extensions of the VBB protocol can be contemplated. The most attractive one is a dynamic version of the
protocol that would skip segment broadcasts that are not needed by any incoming requests. Another one is to develop a
variant of the protocol that would never require the customer STB to receive data from more than two channels at the
same time.

REFERENCES

1. S. W. Carter, D. D. E Long and J.-F. Pâris, “Video-on-demand broadcasting protocols,” In Multimedia
Communications: Directions and Innovations (J. D. Gibson, Ed.), Academic Press, San Diego, 2000, pages 179–
189.

2. A. Dan, D. Sitaram, and P. Shahabuddin. “Dynamic batching policies for an on-demand video server.” Multimedia
Systems, 4(3):112–121, June 1996.

3. Golubchik, L., J. Lui, and R. Muntz. “Adaptive piggybacking: a novel technique for data sharing in video-on-
demand storage servers.” Multimedia Systems, 4(3): 140–155, 1996

4. L. Juhn, and L. Tseng, “Harmonic broadcasting protocols for video-on-demand service,” IEEE Transactions on
Broadcasting, 43(3):268–271, Sep. 1997.

5. L. Juhn and L. Tseng. “Fast data broadcasting and receiving scheme for popular video service” . IEEE Transactions
on Broadcasting, 44(1):100–105, March 1998.

6. J.-F. Pâris, S. W. Carter and D. D. E. Long. “A low bandwidth broadcasting protocol for video on demand.” Proc.
7th International Conference on Computer Communications and Networks (ICCCN '98), pages 690–697, Oct. 1998.

7. J.-F. Pâris. “A simple low-bandwidth broadcasting protocol for video on demand,” Proc. 7th International
Conference on Computer Communication and Networks, pages 690–697, Oct. 1999.

8. J.-F. Pâris. “A fixed-delay broadcasting protocol for video-on-demand,” Proc. 10th International Conference on
Computer Communications and Networks (ICCCN ‘01), pages 418–423, Oct. 2001.

9. ReplayTV. http://www.replay.com/.

10. TiVo Technologies. http://www.tivo.com/.

11. UltimateTV. http://www.ultimatetv.com/.

12. S. Viswanathan and T. Imielinski. “Metropolitan area video-on-demand service using pyramid broadcasting.”
Multimedia Systems, 4(4):197–208, 1996.

