A New Voting Approach to Fault-Tolerant CORBA

José-Carlos Martinez-Vélez

Jehan-Francois Péaris

Department of Computer Science
University of Houston, Houston, TX 77204-3475

jev@shellus.com, paris@acm.org

Abstract

We propose a new voting protocol for a CORBA-
compliant replication service as a suitable solution to
the strong fault-tolerant requirements of the latest
generation of applications. Our new replication service
works as a highly available collection of CORBA
objects providing transparent support of the replication
services to the client applications. We differ from other
FT CORBA proposals in that we bypass the read-
one/write-all model and implement instead a dynamic
voting protocol. To reduce space overhead, we replace
some replicas with witnesses that only contain the
metadata. We also reduce the message traffic
overhead by using cohort sets, thus eliminating the
need for metadata updates at every client access.

1 Introduction

The most promising approach to solve the distribu-
tion, interface and integration problems for leading-
edge applications is the OMG's Common Object
Request Broker Architecture (CORBA). It provides
mechanisms for the development of component-based
distributed applications that satisfy reguirements for
interoperability, efficiency and flexibility. In spite of
its success as a component framework, the issue of
fault-tolerant CORBA is in its infancy. The limited
specification that has been adopted by the OMG does
not address yet all the strong fault tolerance require-
ments of mission-critical applications.

Current research on fault-tolerant CORBA has
focussed on using object-group communication mecha
nisms [3, 8, 10] to replicate the critical objects of each
application. These engines maintain the consistency of
al members of a group of replicated objects by
providing reliable delivery of messages among al the
replicas. The mechanism is straightforward but it
cannot handle network partitions without using

complex configurations that recognize gateways as active
members of the processing groups. This is a limitation
that could affect the replicated object’s availability by
preventing full access to the replicas or by degrading its
performance.

We present a new dynamic voting protocol that pro-
vides access to the replicated object during network
partitionsin a natural way. This new protocol is based on
object replication control and assures the consistency of
the set of replicas through quorum computations. In the
absence of Byzantine failures, these computations
guarantee the correctness of the current states of the
replicas. This robustness is the main advantage of
replication protocols over group communication
protocols.

The replication control protocol we present is the first
one to combine the respective advantages of dynamic
voting, witnesses and voting without version numbers.
As our Markov analysis shows, combining these two
techniques results in a more efficient replication control
protocol that provides higher data availabilities than static
voting protocols and protocols that do not incude
witnesses.

Since thisis the first sudy investigating the possibility
of using a voting protocol to provide fault-tolerant
CORBA sarvices, our proposal describes how our
dynamic voting protocol could be inserted within the
current FT CORBA specification. We also present some
experimental data about a Smple prototype version of our
proposed replication control protocol. They show the
superiority of the voting approach over the object-group
communi cation mechanisms.

The following section presents an overview of the
related work on FT CORBA, as well as on replication
control protocols. Section 3 introduces the new voting
protocol implemented by our framework and its
availability analyss. An overview of the possible
architecture for FT CORBA with voting is also shown
with adescription of a prototypein section 4. Finally, the
concluding remarks are presented in section 5.

2 Redated work

Current research for FT CORBA [11] has drictly
focussed on object-group communication. As a result,
voting protocols have been totally ignored. Here, we
cover the related research giving the foundation for our
FT CORBA implementation usng a new object
replication voting protocol which eliminates the use of
version numbergtimestamps [14] and reduces the
overhead by maintaining witnesses [12] and requiring
only amajority of replicareplies.

2.1 Replication models

The configuration of the different types of fault
tolerance approaches [11] is based on the quality of
service (QoS) required for the CORBA objects. For our
purposes, we define QoS in terms of three variables:
degree of availability, degree of rdiability and
performance degradation. Availability is measured as
the ratio of the available time over the total time, and
reliability as the probability of no failures over a time
interval. For example, some CORBA objects are
supposed to actively exist for long periods of time
(active configurations). Others do not have that
requirement (passive configurations) and are only
active, together with the application objects, for short
periods of time. Different types of fault-tolerance
(active or passive), through replication, make the
digtinction between these three objectives. Other
factors must aso be considered in some fashion, for
example, the data loss due to replica failures; scalabil-
ity, meaning how many replicas can be used and how
many concurrent clients the service can handle.
Resource usage is another measure for a fault-tolerant
algorithm. It simply measures how many resources are
needed for the algorithm to work properly. We focus
on CORBA objects with strong fault tolerance require-
ments. To satisfy the requirements we propose an
active replication protocol. Our emphasis is on object
replication control algorithms supporting high avail-
ability, high reliability and low performance impact on
the application objects. We believe that the current
proposals do not achieve these goalsin their entirety.

Current object-group communication implement-
ations follow the read-one/write-all protocol [7]. This
protocol specifies that al replicas must be updated at
every access. It assumes, therefore, that all replicas will
always remain identical, providing efficient read access.
This very intuitive protocol suffers from a major
disadvantage: since every write must update al
replicas, it makes replicated objects less available than
non-replicated objects. Our proposal overcomes this
disadvantage by requiring only a majority of replicas to

be consistent. As we describe below, not only do we
propose a protocol optimizing this requirement, we also
optimize our multicast by using an updated version of the
guorum-oriented communication mechanism [5].

2.2 Voting protocols

Voting protocols guarantee the reliability of the repli-
cated objects by disallowing read and write accesses that
cannot collect a quorum of replicas. The best known
voting protocols include majority consensus voting [15],
weighted voting [4], dynamic voting [1], dynamic voting,
dynamic-linear voting [6], and voting with witnesses [12].
Each one of these protocols relies on quorum com-
putations to provide reliability for the objects. To make
such guarantees, the protocols follow two quorum
requirements:

Won W0 O,k 1
RaWzO Oi,])

where W, and W represent the two arbitrary write quo-
rums and R an arbitrary read quorum. These require-
ments prevent conflicting updates and guarantee that
every read will necessarily access at least one of the most
recently updated objects.

All voting protocols can be broadly divided into two
classes, namely static protocols and dynamic protocols.
Static protocols have fixed quorums. Hence they must
prevent object updates whenever they cannot gather the
votes of a majority of the object replicas. Dynamic
protocols adjust their quorums to keep track of changesin
replica availability: whenever a write quorum of replicas
notices that it cannot contact the remaining replicas, it
excludes these replicas from quorum computations and
computes new read and write quorums satisfying
conditions (1) and (2). As aresult, dynamic voting pro-
tocols can continue to provide write access after the
successive failures of a majority of the object replicas. To
avoid inconsistent updates, we must prevent excluded
replicas from participating in any quorum until they are
formally reincluded into the current set of voting replicas
(the majority partition or majority block).

Both static and dynamic voting protocols require a
minimum of three replicas to improve upon the avail-
ability of an non-replicated object. However one of these
replicas can be replaced by a witness [13]. Witnesses are
very small entities that hold no data but maintain enough
metadata to identify what it believes to be the most recent
version of the object. This information could be a
timestamp containing the time of the latest update or a
version number, which is an integer incremented at each
object update.

Voting without version numbers [14] is a more recent
implementation of the dynamic-linear voting protocol that

does not require version numbers. Instead, it keeps a
cohort set for each replicated object, identifying the
replicas that participated in the last write operation.
The protocol guarantees that al sites sharing the same
cohort set are identical, greatly ssmplifying the replica
metadata and eliminating the need for version numbers.

2.3 FT CORBA current approaches

As we already mentioned, the OMG just published
the revised joint submission for FT CORBA. Current
research has focused on different models to provide FT
CORBA objects for high availability requirements.
These models emphasize object-group communication
as in group multicast. As we mentioned before, the
problem with the current group communication imple-
mentations is that they act under the read-one/write-all
protocol, where all the replicas of the group are updated
at every write access. Many of the application objects
supporting strong fault tolerance requirements not only
require high availability and reliability, but also per-
formance transparency. To support these requirements
for such active CORBA objects, we need a replication
service minimizing performance degradation at the
same time it satisfies the other fault tolerance require-
ments.

In the following section we introduce our new object
replication voting protocal, including an overview of its
implementation architectural pattern.

3 CORBA-compliant object replication
components

We consider a CORBA framework maintaining
replicated objects at distinct nodes of a computer
network. Replicating active objects introduces special
chdlenges as node failures and network partitions are
likely to result in inconsistent replica updates. Replica-
tion protocols mediate with these challenges to
guarantee the consigtency of the replicas while provid-
ing the highest possible object availability and
reliability.

Our goal is to provide a mechanism to build highly
available CORBA-compliant applications with repli-
cated critical components. Neither the CORBA
standard or conventional/proprietary implementations
of CORBA directly address fault tolerance through a
voting replication service. The current approaches
work with the problem using group communication
mechanisms focusing on good delivery of messages to
the replicated objects. We believe that this mechanism
is not very efficient because it necessarily increases the
number of requests between replicas and clients. Our
implementation follows a more efficient approach by

mediating the accesses to the replicated objects using a
guorum-oriented multicast mechanism to access only a
majority of the replicas ingead of all of them. It dso
minimizes the network traffic as well as the request/reply
ratio between the replicas and the clients. In addition, it
maximizes the efficiency of each communication access
with the replicas by making requests only when they are
really necessary and providing paralel access requests.

3.1 A new object replication control protocol

As we mentioned earlier, our major concern was to
select a replication control protocol that would allow
updates in the presence of network partitions without
endangering the consigency of the replicated objects.
This immediately excluded available copy protocols
because they do not work correctly in the presence of
communication failures. We also rejected object group
communication protocols because none of them alows
updates in the presence of network partitions without
requiring explicit monitoring of each communication
path. Thus our sole possible choice was to select a voting
protocol.

Our second objective was to minimize the overhead of
our replication control protocol. This was especially
important because voting protocols are notorioudly bad in
that respect. Firdt, they require a minimum of three
replicas to improve upon the availability of an non-
replicated object. Second, each access to a replicated
object involves the collection of a quorum of replicas.
Replacing some replicas by witnesses only reduces the
storage overhead of voting protocol but does little to
reduce their communication overhead.

Our solution to this problem isanove implementation
of witnesses using cohort setsinstead of version numbers.
Each witness will consist of a bitmap identifying (a)
which replicas have participated in the last write operation
and (b) which witnesses are included in the current
majority block. A witness for areplicated object with n
replicas and m witnesses will thus occupy exactly n+ m
bits. While version numbers had to be updated at every
write operation, cohort sets are only updated at failure
detection and/or recovery time.

More formally, our protocol considers replicas and
witnesses that reside on different sites of a computer
network. Sites can fail and recover as well as be tempo-
rarily unable to communicate with other sites. We
assume that all sites will either operate correctly or stop
exchanging messages with the other sites. Hence
Byzantine failures are specifically excluded.

The majority block of a replicated object is the set of
witnesses and replicas—Iet us call them voting entities—
that are currently allowed to participate in quorum
computations. Any change in the composition of the

majority block will require a write quorum and every
write quorum will aways include at least one current
replica.

We associate with each voting entity a cohort set
representing the set of replicas that (a) were current
after the last write or replica recovery in which the
voting entity participated and (b) were or are ill in the
last majority block in which the voting entity partici-
pated. Cohort sets thus play a double role: they keep
track of which replicas are current and which voting
entities are in the current majority set. Hence any
update that cannot modify the state of all replicasin the
current cohort set cannot proceed without simultane-
ously updating the cohort sets of all the current replicas
and electing a new majority block. Hence all replicas
that are in the current majority block will aways have
identical cohort sets.

Witnesses do not normally participate in read or
write operations unless the operation involves the
election of anew majority block. Our protocol assumes
that witness failures and recoveries will ultimately be
reflected in the composition of the current majority
block but does not rely on the instant detection of
witness failures or recoveries. As a result, it may
happen that the cohort sets of the voting entities in the
current majority block contain witnesses that have
failed or omit witnesses that have recovered.

To better understand the relationship between cohort
sets and the magjority block, consider the following sce-
nario. Let O be a replicated object O consisting of two
replicas (Ao, Bo) and three witnesses (Xo, Yo, Zo). An
initial quorum satisfying the two conditions:

VVJ' nWez0O 0Oj,k
RnW=z0O Oi,j
is|RI=W|=3.
As long as al sites maintaining voting entities
are available and up-to-date, their corresponding

cohort set memberships will remain identical and
equal to:

Ci:{AO,BO,XO,YO,ZOR} Dili:
{A01 BOv XO! YO! ZO}
The majority block isinitialy defined with the

same configuration as the cohort sets because all the
Sitesare available.

Ma.‘lBIk = {A01 BO! XOv YOv ZO}
Assume now that the following events happened
in the order specified:

a) Witness Xo becomes unreachable after a net-
work partition: the cohort sets of the replicated

object remain unchanged until a new majority
block is elected.

b) Write access is requested to update O: the wit-
ness failure continues to remain undetected and
the cohort sets of the replicated object remain
unchanged.

¢) Replica Ao becomes unavailable after a site
failure: both failures remain undetected and the
cohort sets of the replicated object remain un-
changed.

d) Write access is requested to update O: the write
protocol detects the failure of replica Ao and
requests the election of a new majority block.
During the election process, the failure of wit-
ness Xo is findly detected and the resulting
majority block excludes both replica Ao and
witness Xo. The resulting object configuration
is

G ={Bo, Yo, Zo} i=Bo, Yo, 2o
Ma_lBIk: {BR, Yo , Zo}
(Ca=Cx={Ar, Br, Xo, Yo, Zo})
IR =W =2
This example immediately suggests a small protocol

improvement. Observe that a witness failure is never
detected until after areplicafails and a write access to the
object is requested. Hence failed witnesses could remain
in the current majority block for days or even weeks.
This is clearly an undesirable situation because it will
make read and write quorums harder to achieve. The
simplest solution is to send out periodical probes
checking the status of all voting entities and initiating the
election of a new majority block whenever the need
occurs. These probes would also speed up the detection
of replica failures whenever the replicated object is not
frequently modified.

It may happen that successive site failures bring a
replicated object in a gate where there are not enough
replicas to satisfy a write quorum. Updates to the repli-
cated object will then be disabled until enough replicas
have recovered to recongtitute a write quorum within the
last mgjority block.

3.2 Availability analysis

Availability is the most common measure of fault
tolerance for repairable systems that are expected to
remain operational over a long period of time It is
traditionally defined as the fraction of time a system is
operationa. In the case of replicated data objects, the
availability of areplicated object represents the fraction of
time that the consigency control protocol will allow
access to the object.

Figure 1. State transition diagram for two replicas and
one witness

Our system model consists of a set of sites with
independent failure modes connected via a network
whose failure rate is negligible. When a dte fails, a
repair process is immediately initiated at that site.
Should several sites fail, the repair process will be
performed in parallel on those sites. We assume that
site failures are exponentialy distributed with mean A,
and repairs are exponentially distributed with mean .
The system is assumed to exist in statigtical equilib-
rium.

Although the assumption of an independent failure
rate A isreasonable if the sites have independent power
sources, the assumption of exponential repair times is
harder to defend on general grounds. However, both
hypotheses are necessary for a steady-state analysis to
be tractable and have been made in most probabilistic
studies of the availability of replicated data[7, 12-14].

Figure 1 represents the state trangtion diagram for
two replicas and one witness managed by a dynamic-
linear voting protocol using cohort sets. For the sake of
simplicity, we will assume that the replicated object is
frequently updated and that changes in the status of the
two replicas and the witness are quickly reflected in the
composition of the majority block. We will further
assume that the initia read and write quorums are two
voting entities out of three.

We can then represent the state of the replicated
object by the number of replicas and witnesses that are
available at any time. For instance, gate <21> will rep-
resent the state of the replicated object when the two
replicas and the witness are operational. Edges will
represent transitions between states and edge labels
represent the rate probabilities of these transitions. We
can immediately identify two kinds of trangtions,
namely failure transitions and recovery transtions.

Failure transitions correspond to the failure of one of the
three voting entities: their trandtion rate is either A or 2A.
Conversdly, recovery transitions represent the recovery of
a voting entity that had previoudy failed and their
trangition rate is always equal to .

Starting from state <21>, we can see that a failure of
the witness would bring the replicated object into state
<20>. Sincethere are exactly two replicas available, the
protocol will elect a tie-breaking rule and give to one
replica (the dominant replica) precedence over the other
(the weak replica). A failure of the weak replica would
bring the object into state <10> where updates are still
possible even though only one of the three voting entities
remains accessible. Conversaly a failure of the dominant
replica would move the replicated object into state <10'>.
State <10'> is an unavailable state, as the second replica
cannot form a write quorum. The replicated object will
then remain unavailable until it returns to state <20> or to
state <11>. Looking back at state <10>, we see that a
failure of the last available replica would bring the system
to state <00'> where all three voting entities are
unavailable. There are three recovery paths possible from
state <00'>:

a) the witness recovers firg and brings the replicated
object into state <01'>; the replicated object remains
unavailable as long as neither of its two replicas can
be accessed;

b) the dominant replica recovers firg and returns the
object to the available state <10>; and

¢) the dominated replica recovers first and brings the
object back to state <01'>.

Starting again from state <21>, we see that a failure of
either of the two replicas would bring the replicated
object in state <11>. State <11> is an available state and
its read and write quorums are exactly one replica. A
failure of the witness would bring the object into state
<10> where a failure of the sole remaining replica would
move it to the unavailable state <01>. A failure of the
replica that failed first would bring the object into state
<11'>. Note that state <11'> is an unavailable state
because the replica that recovered was previoudy
excluded from the majority block when the object entered
state<11>. Conversdly, the recovery of the replica that
failed last would recongtitute the last majority block and
bring the replicated object back to state <11>.

To obtain the availability of the replicated object, we
first solve the equilibrium conditions for the eight system
states and compute then the probability of being in any of
the four accepting states, namely <21>, <20>, <11> and
<10>. After simplification we obtain:

L \ \
AN
\ S o
0.9 + -
AN ~
~
2 ~-
= N
E I \ \\\\‘ —
‘© 0.8 §§§-
s | — - DLV(2,1) N g S
E ——MCV(3) <
2 — —DVWW(2,1) -
o ~
~
07+ ~—
— —— -
06 b— .. : :
0.00 0.05 0.10 0.15 0.20 0.25

Failure rate to repair rate ratio

Figure 2: Compared availabilities of replicated objects with three entities managed by dynamic voting with
witnesses, majority consensus voting and voting with witnesses.

2+9 +17p% +11p° + 2p*
(2+3p+2p*)(1+p)°
where p=A/p isthefailurerateto repair rateratio.

Aoy (21) = (©)

Note that equation (3) is aso the availability of a
replicated object consisting of three replicas managed by
the DLV protocol. Hence replacing one of the three
replicas managed by the DLV protocol by a witness has
no effect on the availability of the replicated object.

Figure 2 compares the availability of two replicas and
one witness managed by our protocol (DVWW(2, 1))
with those of a three replicas managed by majority con-
sensus voting (MCV(3)) and two replicas and a witness
managed by a static voting protocol (VWW(2, 1)). We
selected arange of values for p between 0 and 0.25. The
first value corresponds to a voting entity that never fails
while the second corresponds to a voting entity that is
available 80 percent of the time. As one can see the our
protocol performs much better than its static counter-
parts even though it storage requirements are two thirds
of those of three replicas managed by magjority
consensus voting.

3.3 Architectural model of our new object
replication components

As we stated before, the OMG' s joint revised submis-
sion does not properly support active replication with

voting protocols. It simply assumes the only active
replication style is through a group communication
protocol, although it recognizes the active style with
voting will be needed as an extension. Also notice that
network partitions are not well supported by the
specification. Our proposition supports network
partitions by default since it is based on a voting
algorithm.

We can adopt the current FT CORBA specification to
the voting protocols. This is possible by using some
schemes specifically for group communication for other,
dlightly changed, purposes. Also, as expected, the speci-
fication provides support for the definition of new fault
tolerance properties that apply to specific replication
styles. It ispossible to define properties that apply to all
object groups defined as voting object sets. We are
using the TAG_GROUP component to define the voting
sets (mgjority block and cohort sets). This component
provides the flexibility for the dynamic part of our
protocol as well as the creation/deletion of entities and
the upgrading/downgrading of witnesses and replicas
respectively. The purpose of the group version can be
dlightly changed to represent our majority block and/or
the cohort sets. It is defined as a Java integer that we
can use for our bitmap implementation.

Our implementation uses the TAG_INTERNET_IOP
profile to address gateways, consequently communicat-
ing with each of the voting set members throughout our

new object replication voting protocol. A quorum multi-
cast protocol is used by the gateway to provide a
reliable, totally ordered, message delivery service. We
also implemented the Infrastructure-Controlled member-
ship style since it is the style that gives the protocol
more control producing more accurate eval uation results.

In summary, we have introduced some of the aspects
of our implementation and how to map them from the
current FT CORBA specification to a voting scheme.
Our replication manager uses the
FT::ACTIVE_WITH_VOTING as the ReplicationStyle
property, the FT::MEMB_INF_CTRL property to repre-
sent the membership style and for the consistency style
we implemented the FT::CONS INF _CTRL, among
other specified/proprietary properties. We had to simu-
late some properties and IIOP extensions since no
current ORB supports some of the newly specified
semantics. We intend to present our results in a future

paper.

4 Implementation issues—a prototype

We present preliminary results of some implementa-
tion issues we will have to address at a future time. In
this section we study the performance of CORBA-com-
pliant applications executing the group communication
algorithm and a simple prototype version of our pro-
posed replication control protocol. A concrete example
is discussed and the results of the study are introduced.

4.1 A concrete example

Our prdiminary hypothesis is that our algorithm
will perform better than the initial/current FT CORBA
solution algorithms, while maintaining satisfactory
object availabilities. We claim that reducing the
network overhead by substituting some of the replicated
entities with witnesses and reducing the data sent
throughout the network will increase the performance
drasticaly during a period of time. We recognize that,
in a sensg, all the processing in each replicais virtualy
in parald, but since we are reducing the work that must
be performed for a reply to be accepted, we achieve
better results.

The objective of thisinitial prototype is to prove that
our assumptions are correct. We want to verify that
reducing the number of client/server requests actually
reduces the overhead in the network and performs faster.
At the same time, the size of the data passed between the
client applications and the replica servers also affects the
performance, as well as the network overhead and the
throughput.

We ran our client/servers setup in different situations
to get areading on the performance of both algorithms,

using CORBA static method invocations. Our client
performs 1000 access requests to the replicated object
during the elapsed time. Then the program calculates
the average response time in milliseconds by dividing
the elapsed time by the number of request. This way we
measure, under the CORBA environment, the access
request/reply differences between the group communi-
cation algorithm and our initia prototype.

In the case of the group communication protocol, the
algorithm passes a small object among the client and the
servers, which contains a simple attribute of type integer.
This same object, in addition to the small metadata enti-
ties representing the cohort sets and the majority block,
are used for the prototype.

Our test case consists of five entity servers and one
client application. Our prototype uses the minimum
guorum requirements, which are two replica entities and
three witnesses. We created three different scenarios,
(1) client and servers exist in the same host, (2) client
and servers execute in two, heterogeneous hosts, and (3)
client and servers execute in multiple, heterogeneous
hosts across the network, each process running on its
own host.

4.2 Performance

The client application making all the replicated object
access requests always executes in the same machine, a
266MHz Pentium Il with 64 MB RAM running
Windows NT 4.0. The servers communicate with the
client across a 10 Mbit/s Ethernet Token Ring, executing
on either a Sun Enterprise 2 workstation running Solaris
2.6, or a Sun Ultra 2 running the same version of Solaris.
Each Sun workstation has 256 MB of memory. Both
client and servers are Java applications, using the Java 2
SDK's ORB.

As Table 1 indicates, the prototype of our algorithm
performs faster than the group communication protocol
under the same conditions. The caculated margin of
error is about 10 percent, even using the same setup.
Notice that remote invocations are dightly faster than
local ones, this is because in the remote scenarios the
servers are running in parallel. The prototype simply
outperforms the simple group communication imple-
mentation. Even though the servers are independent
processes running in independent hosts (scenario 3), the
probabilities of jobs being delayed are higher with five
servers than with three. This clearly delays the reply to
the client, making it, under the prototype implementa-
tion, accessible to the client faster. There are other rea-
sons for this behavior, those will be studied and exam-
ined in future research.

Table 1. Three case scenarios for simple implementa-
tions of our prototype and a group communication
algorithm

Scenario (1) 2 3

Our Prototype 6.59ms | 3525ms | 2.434ms

Group Communication | 10.656 ms | 5177 ms | 3.285ms

An interesting observation occurred when we inter-
changed an Ultra 2 for an Ultra 1, keeping the rest of the
configuration unchanged. The simple implementation of
the group communication protocol performed within
14.391 ms., under the test case scenario (3). The proto-
type of our agorithm maintained the original values,
averaging 2.63 ms. The reason is simply because the
group communication must wait for all the servers to
reply, while our prototype ssimply waits for the majority
of servers to reply. This is a considerable difference
between both test implementations.

5 Conclusion

None of the existing proposals for managing repli-
cated CORBA objects can alow write access to the
replicated object in the presence of network partitions
without requiring explicit monitoring of each communi-
cation path. We have presented a new architecture for
fault tolerance in large distributed systems with repli-
cated CORBA objects. Unlike existing proposals, our
architecture uses voting to guarantee the consistency of
the replicated data. Hence it allows updatesin the pres-
ence of any network partitions without making any
assumptions on the topology of the communication sub-
system. Our architecture is dso the firg to integrate
several recent advances in voting protocols, namely wit-
nesses, dynamic-linear voting and voting without
version numbers. As aresult, it requires fewer replicas
and incurs less communication overhead than the best
existing replication control protocols.

We have also presented a testbed implementation of
our architecture within the FT CORBA framework with
some simulated components as well as a Markov analy-
sis of the availability of a replicated object managed by
our dynamic-linear voting protocol with witnesses.

More work needs to be done to evaluate the reiability
of replicated objects managed by our new protocol, com-
plete the implementation of our testbed and compare its
performance with those of FT CORBA object-group
communication implementations.

Acknowledgments

This research was supported in part by the Texas
Advanced Research Program under grant 003652-0124-
1999.

References

[1] D. Davcev and W. A. Burkhard, “Consistency and
Recovery Control for Replicated Files” in Proc. 10"
ACM SOSP Symposium, 1985, pp. 87-96.

[2] A. Duda “Analysis of Multicast-based Object Replica-
tion Srategies in Distributed Systems” in Proc. 13"
|CDCS Conference, 1993, pp. 318-338.

[3] P.A.Feberand R. Guerraoui, "The Implementation of a
CORBA Group Communication Service," Theory and
Practice of Object Systems, vol. 4, no. 2, pp. 93-105,
1998.

[4] GiffordF1 “Weighted Voting for Replicated Data” in
Proc. 7" ACM SOSP Symposium, 1979, pp. 150-161.

[5] R. A. Golding and D. D. E. Long, “Quorum-Oriented
Multicast Protocols for Data Replication,” Technica
Paper UCSC-CRL-91-21, University of California, Santa
Cruz, 1991.

[6] S. Jgodia and D. Mutchler, “Enhancements to the
Voting Algorithm,” Proceedings 13" VLDB Conference,
1987, pp. 399-405.

[71 D. E. Long and J.-F. Paris, "A Leaner, More Efficient,
Available Copy Protocol " in Proc. 8" IEEE SPDP Sym-
posium, 1996, pp. 400-407.

[8] S Maéffeis, "Adding Group Communication and Fault-
Tolerance to CORBA," in Proc. USENIX COOTS Con-
ference, 1995, pp. 135-146.

[9] B. E. Modzelewski, D. Cyganski and M. V. Underwood,
"Interactive-Group Object-Replication Fault Tolerance
for CORBA," in Proc. 3" USENIX COOTS Conference,
1997, pp. 241-244.

[10] P. Narasmhan, L. E. Moser and P. M. Melliar-Smith,
"Exploiting the Internet Inter-ORB Protocol Interface to
Provide CORBA with Fault Tolerance” in Proc. 3
USENIX COOTS Conference, 1997, pp. 81-90.

[11] Object Management Group, “Fault Tolerant CORBA”,
JRS, ftp.omg.org/pub/docs/orbos/99-10-05.pdf, Object
Management Group, Framingham, Mass., (1998).

[12] J-F. Péris, “Voting with Witnesses: A Consistency
Scheme for Replicated Files" in Proc. 9" ICDCS Con-
ference, 1986, pp. 606-612.

[13] J-F. Péaris, D. D. E. Long, "Voting with Regenerable
Volatile Witnesses," in Proc. 7" ICDE Conference,
1991, pp. 112-119.

[14] J-F. P&is, D. D. E. Long, "Voting without Version
Numbers," in Proceedings 1997 IPCCC Conference,
1997, pp. 139-145.

[15] J. Seguin, G. Sergeant, P. Wilms, “A Mgjority Consen-
sus Algorithm for the Consistency of Duplicated and
Distributed Information,” in Proceedings 1% ICDCS
Conference, 1979, pp. 617-624.

