

Dynamic Management of Highly Replicated Data

Jehan-Franc,ois Pâris Perry Kim Sloope

Department of Computer Science
University of Houston

Houston, TX 77204-3475

Abstract
We present an efficient replication control protocol for
managing replicated data objects that have more than five
replicas. Like the grid protocol, our dynamic group pro-
tocol requires only O(√ddn) messages per access to enforce
mutual consistency among n replicas. Unlike other proto-
cols aimed at providing fast access, our protocol adapts
itself to changes in site availability and network connec-
tivity, which allows it to tolerate n − 2 successive replica
failures.

We evaluate under standard Markovian assumptions
the availability of a replicated object consisting of n repli-
cas managed by our dynamic group protocol when the n
replicas are on the same LAN segment and find it to equal
that of an object with the same number of replicas
managed by the dynamic-linear voting protocol.

Keywords: distributed consensus, replicated data, repli-
cation control, voting, network partitions.

1. Introduction
Many large-scale distributed systems have data that are
replicated at a large number of sites within the system.
Managing replicated data is a difficult task because site
failures and network partitions can introduce inconsisten-
cies among the replicas. Replication control protocols
were designed to avoid this problem and provide the users
with a consistent view of the data. They are said to
enforce one-copy serializability [5].

Recent years have seen the development of several
protocols specifically tailored to allow faster access to the
replicated data. These protocols achieve their objective
by reducing the number of sites that need to be contacted
in order to validate an access request. As a result, these
protocols are also much less fault-tolerant and provide
mediocre data availabilities.

We present a dynamic group (DG) protocol that
achieves both fast access and high data availability. Like
the grid protocol, our DG protocol requires only O(√ddn)
messages per access to enforce mutual consistency among
n replicas. It differs from the grid protocol by being
dynamic and reorganizing itself when it detects a change
in the number of available sites or the connectivity of the

network. As a result, it can tolerate n − 2 successive
replica failures while the grid protocol can fail in the pres-
ence of √ddn failures.

2. Previous Work
Voting protocols [6] are the largest and best-known class
of replication control protocols. Voting protocols guaran-
tee the consistency of replicated data by disallowing all
read and write requests that cannot collect an appropriate
quorum of replicas. Different quorums for read and write
operations can be defined and different weights, including
none, assigned to every replica [7]. Consistency is
guaranteed as long as the write quorum W is high enough
to disallow parallel writes on two disjoint subsets of repli-
cas, and the read quorum R is high enough to ensure that
read and write quorums always intersect.

These conditions are simple to verify, which accounts
for the conceptual simplicity and the robustness of voting
protocols. Voting has however two major disadvantages.
First, it requires 2n + 1 replicas to guarantee full access to
the replicated data in the presence of n simultaneous
replica failures. Hence three replicas are required to pro-
tect against a single failure. Second, the number of mes-
sages required to collect a quorum grows linearly with the
number of replicas, which makes voting protocols
unsuited for managing highly replicated data.

We have seen in recent years the development of
several replication control protocols specially tailored for
the management of highly replicated data. These proto-
cols include voting with tokens [14], the grid protocol [4],
the tree quorum protocol [1], the hierarchical quorum
consensus protocol [9, 10] and location-based replication
[17]. The most attractive of these protocols is the grid
protocol of Cheung et al. because it only requires O (√dddn)
messages per access while distributing the transaction
processing load among all replicas. The grid protocol
organizes the set of replicas of a data object into a logical
grid with p rows and m columns as in:

A D G J
B E H K
C F I L

A read quorum consists of one replica from each column.
Thus the set {B, E, I, L} is a read quorum while the set
{A, B, C, D, E, F, G} is not. A write quorum consists of

all the replicas in one column plus one replica from each
of the m − 1 remaining columns.

While this organization only requires O (m) messages
per read and O (p + m − 1) messages per write, it also
makes the replicated data much more vulnerable to
replica failures as the simultaneous failure of all replicas
within a column suffices to make the replicated data una-
vailable [10]. Increasing the size of the columns while
reducing their number is not a solution since it would
decrease the probability that a write will find at least one
complete column. Instead, we propose to allow for
dynamic adjustments in the grid topology to reflect
changes in replica availability. These adjustments will
allow the protocol to tolerate a higher number of succes-
sive site failures.

3. Dynamic Group Protocol
The dynamic group protocol is to operate in distributed
environments where some of the sites contain full replicas
of data objects. These sites can fail and can be prevented
from exchanging messages by failures of the communica-
tion subnet. We assume that sites not operating correctly
will immediately stop operations and that all messages
delivered to their destinations will be delivered without
alterations. Byzantine failures are expressly excluded.

Read and write are the two primitive operations that
can be performed on the replicated object. Concurrent
reads are permitted, but to guarantee one-copy serializa-
bility, writes are performed exclusive of other operations.

Our protocol organizes the replicas of a data object
into small groups of equal size that are not necessarily
disjoint. These groups correspond to the columns of the
grid protocol. The set of all groups for a given data
object will constitute a group set for that data object.

A read quorum consists of either one replica from
every group or all replicas from one group. Hence, read
access can continue when all replicas from one group are
dead. A write quorum will require all replicas from one
group plus one replica from every other group.

When the failure of a site is detected, the groups are
dynamically rearranged in order to protect the availability
of the replicated data object against subsequent failures.
The number of groups may therefore decrease as sites
fail, but the number of replicas in each group will remain
constant. Regrouping is not permitted when a write
quorum cannot be reached because a write quorum is
necessary to enforce mutual exclusion. If the number of
groups falls below three, then the replicated data could
become unavailable with the failure of only two sites. For
this reason the protocol reverts to dynamic-linear voting
whenever three groups cannot be formed.

The dynamic-linear voting (DLV) is a dynamic coun-
terpart of majority consensus voting [8]. The DLV proto-
col maintains a count of all replicas thought to be accessi-
ble and allows access to the replicated data as long as a
majority of the replicas in that set remain accessible. The
set is updated after a majority vote whenever the protocol
detects (a) that a replica has become unreachable or (b)

that a replica believed to be unreachable can be reached
again. Since the set represents the majority view of the
state of the replicas, it is known as the majority block.
The DLV protocol differs from earlier dynamic voting
protocols by its ability to resolve the ties that occur when-
ever exactly one half of the replicas in the majority block
are accessible while the other members of the majority
block cannot be reached. The protocol then allows access
to the replicated data only if the set of accessible replicas
includes the highest numbered replica in a linear ordering
of the current majority block.

With the DG protocol, network partitioning may in
some instances prevent a write quorum from being
formed, but DG will typically continue to provide read
access in at least one partition. Although write availabili-
ties may suffer somewhat, read availabilities will be very
high.

A more detailed description of our protocol follows.

3.1. Accessing the Replicated Data
The DG protocol organizes the replicas of a data object
into small subsets or groups of replicas that are to play the
same role as the columns in the grid protocol. A collec-
tion of groups is a group set or a quorum set [3]. How-
ever, the set of all minimal groups is a quorum set.

Definition 2.1 A replica is said to be live if it resides on a
site that is operational.

Definition 2.2 A replica is said to be dead if it resides on
a site that is not operational.

Definition 2.3 Quorum Set. Let U be the set of all repli-
cas of a replicated object. A set of groups Q ⊂ 2U is a
quorum set under U iff

(a) H∈Q implies H⊆U and H≠∅, and

(b) there are no H, J∈Q such that H⊂J,

A quorum set S such that all groups H, J∈S have a non-
empty intersection is a coterie [3].

Locking one group of replicas does not guarantee
exclusive access to the data since the groups do not
always intersect. The intersection property can be
satisfied by locking one group and one member from each
group in the quorum set.

Rule 1: Write Rule. The quorum for a write operation
consists of: one complete group of live replicas from the
quorum set Q and one live replica from every other group
in Q.

The write rule guarantees that a write will leave at least
one group in the quorum set fully current and that all
other groups will contain at least one current replica.

Rule 2 : Read Rule. The quorum for a read operation
consists of either one complete group of live replicas, or
one live replica from every group in Q.

Since a write operation will update one complete group
and one replica in each group, a read quorum will contain
at least one current replica.

Note that read and write quorums are not necessarily
minimal. For instance, the quorum set
{{A B, C}, {D, E, F},{G, A, B}}, which describes the
configuration:

A D G
B E A
C F B

allows the read quorums {A, D, G} and {A, D}.

Since a read can be satisfied by accessing either all
sites in a group or one site from every group, the max-
imum size of a read quorum is max (m, p). Similarly, a
write quorum will require (m + p − 1) sites if all m groups
are disjoint and at most (m + p − 1) sites if sites can
belong to more than one group. Hence our protocol will
require O(√ddn) messages per access as long as m and p
remain O(√ddn).

Each replica will maintain some state information that
will be utilized by the protocol in determining quorums.
These are a version number, a group number, and a
quorum set. The version number v is incremented after
each successful write operation. The group number g is
the ordinal number of the last successful regrouping in
which the replica participated. The quorum set G
represents the view the replica has of the quorum set.

procedure READ(d : data_object)
begin

let U be the set of all replicas
let G 0 be the local quorum set
let g 0 be the local group number
select s ∈ G 0
〈R,v,g,G〉←START(s)
v max = maxr∈R{vr}
g max = maxr∈R{gr}
if R = s and g max = g 0 then

perform the read on any r : vr = v max
else

FLAG_FOR_REGROUP
〈R,v,g,G〉←START(U)
v max = maxr∈R{vr}
g max = maxr∈R{gr}
G max = Gr : gr = g max
if ∀ s ∈ G max, R ∪ s ≠ ∅ or ∃ s ∈ G max, s ⊂ R then

perform the read on any r : vr = v max
fi

fi
end READ

Figure 1: Read Algorithm

Figures 1, 2, and 3 present the algorithms for the read,
write, and recovery operations. An explanation is neces-
sary for several items in these algorithms. The START
operation initiates the access request and returns the infor-
mation needed to determine if a quorum is possible.
These are R, the set of sites responding to the access
request, and three vectors v, g, and G. These vectors

respectively contain the version numbers, the group
numbers, and the quorum sets of the responding replicas.
FLAG_FOR_REGROUP sets a flag that indicates to the
protocol that regrouping is necessary. Regrouping then
begins after the access operation is complete. The COM-
MIT operation completes a write operation by transmit-
ting the new version number to the updated sites.

The read algorithm is fairly simple. In order to per-
form a read, one group of replicas or one member of each
group must be locked. We will call such a collection a
read-group. A read request by a user will be directed to
one of the sites with a replica. From that site a multicast
for a read request is made to the other members of the
same group. By multicasting to members of the same
group as that of the requesting site, the amount of mes-
sage passing is kept to a minimum. The reply will consist
of the version number, the group number, and the quorum
set of each of the responding sites. If a read-group is
formed then the maximum version numbers and group
numbers are calculated. If the group numbers of the
responding sites are the same, then the read proceeds
from one of the sites with the maximum version number.
If a read-group is not formed or the group numbers do not
match, then a read broadcast is made to the all replicas.
The maximum group numbers and version numbers are
then calculated. If a read-group can be formed from the
sites with the maximum group number, then the read is
performed from one of the sites with a maximum version
number. Regrouping is then initiated since non-matching
group numbers or the inability to form a read-group from
any one group indicates that one or more sites have failed.

A write operation is made in a similar manner. Recall
that a write must lock a full group of replicas and one
replica from every other group. This is necessary to
ensure that competing write-quorums are not formed.
Additionally, all replicas in the write-quorum must have
the maximum group number. As with a read operation,
the write request is directed to one of the sites with a
replica. The request is then broadcast to a selected subset
of replicas that represents a write-quorum in the quorum
set G 0 of the replica that is coordinating the write. This
set of replicas consists of the group in which the initiating
replica resides, and one randomly chosen member from
each of the remaining groups. Again the replies will con-
sist of a version number, a group number, and a quorum
set. The maximum group number and version number are
calculated. If all replicas respond and they have the same
group number, then any replicas in the write-group that
do not have current version numbers, are updated from a
site with a current replica. The write is then made to the
replicas forming the write-group and the algorithm ter-
minates. At the same time, the file version numbers of
those sites are incremented. If, during the course of gath-
ering a write-quorum, replicas with group numbers lower
than the calculated maximum are encountered, then these
replicas did not participate in the last regrouping and do
not have a current view of the quorum-set. If all replicas
in the selected write-quorum did not respond then it indi-
cates that some sites have failed or could not communi-

procedure WRITE(d : data_object)
begin

let U be the set of all replicas
let G 0 be the local quorum set
let g 0 be the local group number
select s ∈ G 0
select t : ∀ z ∈ G 0−{s} t ∩ z ≠ ∅
〈R,v,g,G〉←START(s ∪ t)
v max = maxr∈R{vr}
g max = maxr∈R{gr}
if R = s and g max = g 0 then

for all r ∈ R : vr ≠ v max do
RECOVER(r)

od
perform the write
COMMIT(R,v max+1)

else
FLAG_FOR_REGROUP
〈R,v,g,G〉←START(U)
v max = maxr∈R{vr}
g max = maxr∈R{gr}
G max = Gr : gr = g max
if ∃ T ⊂ R : (∃ s ∈ G max : s ⊂ T and

∀ t ∈ G max : t ∪ R ≠ ∅) then
for all r ∈ T : vr ≠ v max do

RECOVER(r)
od
perform the write
COMMIT(T,v max+1)

else
ABORT(R)

fi
fi

end WRITE

Figure 2: Write Algorithm

cate due to network partitioning. In either case a write-
quorum cannot be formed from this set of replicas. A
second attempt at a write-quorum is then made by con-
tacting all sites with replicas. If a write-quorum can be
formed from the responding replicas then the write
proceeds as above. This time upon successful termination
of the write algorithm, regrouping is initiated so that the
quorum set can be updated and a high level of availability
maintained.

A replica that is recovering from a site failure will
have been excluded from the current quorum set if a
regrouping occurred while the site was down. The pur-
pose of the recovery algorithm is to integrate the site back
into the quorum set, as well as to bring it up to date. It
begins by attempting to gather a read quorum. If the
attempt is successful, it determines the maximum group
and file version numbers. If the maximum group number
is the same as that of the recovering site, then regrouping
has not taken place since the site failed and recovery con-
tinues by comparing its version number to that of the

procedure RECOVER (x : replica)
begin

let U be the set of all replicas
repeat

let G 0 be the local quorum set
let g 0 be the local group number
select s ∈ G 0
〈R,v,g,G〉←START(s)
v max = maxr∈R{vr}
g max = maxr∈R{gr}
if R = s and g max = g 0 then

repair x from any r : vr = v max
else

FLAG_FOR_REGROUP
〈R,v,g,G〉←START(U)
v max = maxr∈R{vr}
g max = maxr∈R{gr}
G max = Gr : gr = g max
if ∀ s ∈ G max, R ∪ s ≠ ∅ or

∃ s ∈ G max, s ⊂ R then
repair x from any r : vr = v max

fi
fi

until successful
end RECOVER

Figure 3: Recovery Algorithm

maximum version number. If they do not match, then the
site retrieves a current copy from one of the sites with the
maximum version number. If the version numbers match
then an update is not needed and the algorithm terminates.
If a read quorum can not be gathered, or the quorum set
of the recovering replica is different from that of the
responding sites, then a multicast is made to all replicas.
Another attempt is then made to gather a read quorum and
update the replica. The algorithm will repeat until
recovery becomes possible. If outdated group numbers
are detected during the recovery procedure, regrouping is
performed after completion of the recovery.

3.2. Dynamic Regrouping
The expense of access operations is dependent on the size
and number of groups in a quorum set. The groups do not
necessarily need to be of equal size for this protocol to
operate correctly, but groups of equal size will ensure that
the cost of access operations is uniform throughout the
system. Here we will only consider groups of equal size.
Regrouping may result in a change in the number of
groups, but the number of replicas in a group will remain
constant. In general, for a given number of replicas, a
larger group size increases the cost of a read operation
and decreases the cost of a write operation. For example,
12 replicas could be formed into 4 groups with 3 replicas
per group. This results in a minimum of 3 accesses for a
read, and 6 replica updates for a write. If the
configuration is 6 groups with 2 replicas per group, then a

minimum read operation is 2 accesses, and 7 replica
updates for a write operation.

3.2.1. Initial Group Formation
If each group is to contain p replicas then there must be at
least m groups where m = Rn/p H. Additionally we will
arrange the replicas in a lexicographical order. In the
event that m×p > n the last group will be filled with sites
of the highest lexicographical order. The lexicographical
order is used to enhance the availability of the replicated
file by limiting the distribution of replicas within the
quorum set. This is best explained by example. Consider
a configuration using 7 replicas with 3 replicas per group.
The replicas are labeled A through G where A is the
highest order replica and G is the lowest. It would have
the following configuration:

A D G
B E A
C F B

If sites A and B were to fail, both read and write quorums
would still be possible. Alternately if sites A and E had
been chosen as the extra members of the last group, then
write operations would fail if both A and E failed.

The appearance of replicas in more than one group
has the benefit of causing write operations to be less
expensive for some accesses. It also results in a more
uneven distribution of the load since the sites appearing in
more than one group will be called on more frequently for
read operations. Since one of the goals of this protocol is
to more evenly distribute the load, we will attempt to keep
the number of replicas appearing in more than one group
to a minimum.

3.2.2. Dynamic Group Reformation
Dynamic regrouping is initiated when one or more sites
fail to respond to an access request, or when a site with a
replica recovers from a failure. The host that is recover-
ing from a failure or that performed the access operation
initiates the regrouping by making a multicast for a
regroup to all sites with replicas. The responding sites are
locked to prevent response to any access requests or other
regrouping requests. It is then determined if a write
quorum can be formed from the responding replicas. This
is necessary to ensure that competing quorum sets can not
be formed in the event of network partitioning. If a write
quorum can not be formed, regrouping is aborted. If a
quorum is formed, regrouping proceeds in the same
manner as in initial group formation, using only the repli-
cas that responded to the regrouping request. The number
of groups in the new quorum set is calculated based on
the number of responding replicas and the number of
replicas per group. As stated previously, the number of
replicas per group is a constant value that does not
change, only the number of groups in a quorum set may
change. This may result in the loss or addition of one or
more groups. Once the new quorum set is formed, one
group of replicas and one replica from each group in the
new quorum set are selected for updating, and are

updated if needed. The updating is made from one of the
current replicas that was in the write quorum in the previ-
ous quorum set. This is necessary because write opera-
tions do not update all replicas, but only those in the write
quorum. Thus regrouping can result in the formation of
groups that do not contain a current copy. By performing
this updating, it is guaranteed that future access opera-
tions will always find at least one current replica. At this
point the group number is incremented, and the new
quorum set and group number are multicast to the partici-
pating replicas.

The following example serves to illustrate dynamic
regrouping:

In this configuration all n replicas reside on the same
LAN and n = 10 and p = 3. The value of m will then be 4.
Since m×p > n the grouping will be as follows:

A D G J
B E H A
C F I B

Given this arrangement a read operation will involve at
least 3 sites and a write operation will involve at least 5
sites but not more than 6 sites. Suppose site A fails or
becomes unreachable after a network partition. The
number of groups is recalculated based on 6 replicas with
2 per group. This results in the loss of one group. We
then have:

B E H
C F I
D G J

Reads will still involve 3 sites and writes will involve 5 or
6 sites. If site B were to fail then regrouping would again
reoccur.

C F I
D G J
E H C

If site E were then to fail or to become unreachable it
would be replaced by F in the first group and H in the
second group.

C G J
D H C
F I D

The next replica failure would leave only 6 sites.
Regrouping would result in the formation of only 2
groups. The protocol would then revert to dynamic linear
voting.

4. Availability Analysis
In this section we present an analysis of the availability
provided by our protocol. We will assume here that the
availability of a replicated data object is the stationary
probability of the object being in any state permitting
access. AS(n) will denote the availability of an object
with n replicas managed by the protocol S.

Our model consists of a set of sites with independent
failure modes that are connected via a network composed
of LAN segments linked by gateways. When a site fails,
a site repair process is immediately started at that site.
Should several sites fail, the repair process will be per-
formed in parallel on those failed sites. We assume that
failures are exponentially distributed with mean failure
rate λ , and that repairs are exponentially distributed with
mean repair rate µ . The system is assumed to exist in sta-
tistical equilibrium and to be characterized by a discrete-
state Markov process.

These assumptions are required for a steady-state
analysis to be tractable and, in fact, have been made in
most probabilistic studies of the availability of replicated
data [2, 8, 12-13]. Combinational models that do not
require any assumptions about failure and repair distribu-
tions have been proposed [15-16] but these models cannot
distinguish between available states and recovery states.

The availability analysis of a replicated object subject
to network partitions is complicated by the fact that repli-
cas that cannot communicate with each other cannot
recover from each other. As a result, the number of
potential states of a replicated object subject to network
partitions is much larger than when partitions are not con-
sidered. Hence, most recent studies of the availability of
replicated data have either relied on simulation models or
have totally neglected communication failures. We will
further assume that the replicated data are frequently
accessed and that site failures will always be rapidly
detected.

Consider a replicated data object managed by the grid
protocol and let us assume that its n replicas are arranged
in p rows of m replicas each. The availability A of a single
replica is linked with the failure and repair rates λ and µ
by the well-known relation:

A =
µ +λ

µhhhhh =
1 +ρ

1hhhhh ,

where ρ =λ / µ [14]. The availability of the replicated
data for the read operation AG

R (m, p) is equal to the pro-
bability that all columns contain at least one live replica:

AG
R (m, p) = (1 − (1 − A)p)m

The availability of the replicated data for the write opera-
tion AG

W(m, p) is equal to the probability that all columns
contain at least one live replica minus the probability that
no column is complete:

AG
W(m, p) = (1 − (1 − A)p)m − (1 − A p − (1 − A)p)m

Consider now the same replicated object managed by
the DG protocol. Every site failure reduces by one the
number of live replicas and results in an attempt to
regroup the remaining live replicas. Since the group
assignments provided by the DG protocol never allow a
replica to belong to all groups in the quorum set, the
failure of a single replica cannot affect the availability of
a write quorum. The regrouping will therefore succeed
unless the remaining number of live replicas is ≤2p, in

which case the protocol reverts to a dynamic-linear voting
protocol. Even then, the dynamic-linear voting protocol
guarantees that the replicated data will remain protected
against successive replica failures as long as there are at
least two live replicas. Should one of the last two live
replicas fail, the lexicographic order of the remaining live
replica will be compared with that of the failed replica.
There are two cases to consider:

(1) the failed replica has the higher value, which implies
that the surviving replica cannot form a new majority
and the replicated data become unavailable, and

(2) the failed replica has the lower value and the opposite
conclusion is reached: the surviving replica forms a
new majority and the replicated data remain available.

Sn Sn −1

S ′n −1 S ′n −2

S 2 S 1

S ′1 S ′0

n λ

µ
µ

(n −1)λ

µ

µ

(n −1)λ

2µ

(n −2)λ

2µ

. . .

. . .

3λ

(n −2)µ
λµ

2λ

(n −2)µ

λ

(n − 1)µ

λ

(n − 1)µ

λµ

Figure 4: Transition Diagram for DG

Figure 4 contains the state transition rate diagram
for a replicated object with n replicas managed by the
DG protocol. Note that left-to-right and top-to-
bottom transitions represent site failures while right-
to-left and bottom-to-top transitions indicate site
repairs. State Sn represents the state of the replicated
object when all its n replicas are live. A failure of
one of these n replicas brings the replicated object in
state Sn −1. The failure will almost immediately result
in a group reassignment since there are enough live
replicas to achieve a write quorum. Successive site
failures would bring the replicated object from state
Sn −1 to state Sn −2 then from state Sn −2 to state Sn −3
and so forth until either one of the failed replicas
recovers or the object reaches state S 2. Whenever the
replicated object is in state S 2 and one of its last two
live replicas fail, two transitions are possible:

(1) if the lexicographic order of the replica that failed
is lower than that of the last live replica, the repli-
cated object remains available and moves to state
S 1;

(2) if the lexicographic order of the replica that failed
is higher than that of the last live replica, the
replicated object becomes unavailable and moves
to state S ′1.

State S ′0 represents the state of the replicated object
after all its replicas have failed. Recovering from
state S 0 would bring the replicated object in state S 1
if the site that recovers has the higher ranked replica
in the last majority partition or in state S ′1 if this is

not the case. Finally states S ′2 to S ′n −1 represent the
states of the replicated object when there are 2 to
n − 1 live replicas but the replicated object remains
unavailable because the highest ranked of the last two
live replicas when the replicated object was last in
state S 2 has not yet recovered.

Consider now the equilibrium equation for the
subsets of states Sn, Sn −1, ..., S 2, S 1 and
S ′n −1, S ′n −2, ..., S ′1, S ′0:

µ
j = 0
Σ

n − 1

p ′j = λ (p 1 + p 2)

where pi is the probability for the replicated object
being in state Si .

Write Availability

Failure rate to repair rate ratio

0.80

0.85

0.90

0.95

1

0 0.05 0.10 0.15 0.20

DG.
4 × 2 GRID

. 2 × 4 GRID

Figure 5: Availabilities for Eight Replicas

Observing that p 1 + p ′1 is the probability of having
exactly one live replica out of n, we have

p 1+p 1 ′ =
(1 +ρ)n

I
L 1

n M
Oρ

n−1

hhhhhhhhh .

Similarly,

p 2 + p 2 ′ =
(1 +ρ)n

I
L 2

n M
Oρ

n−2

hhhhhhhhh .

An upper bound for the probability of being in any of
the n non-available states is then given by:

j = 0
Σ

n − 1

p ′j < ρ
I
J
J
L

(1 +ρ)n

I
L 1

n M
Oρ

n−1

hhhhhhhhh +
(1 +ρ)n

I
L 2

n M
Oρ

n−2

hhhhhhhhh
M
J
J
O

Hence,

ADG(n) = 1 −
j = 0
Σ

n − 1

p ′j > 1 −
(1 +ρ)n

I
L 1

n M
Oρ

n + I
L 2

n M
Oρ

n − 1

hhhhhhhhhhhhhhhhhhh

Write Availability

Failure rate to repair rate ratio

0.90

0.95

1

0 0.05 0.10 0.15 0.20

DG.
3 × 3 GRID

Figure 6: Availabilities for Nine Replicas

Write Availability

Failure rate to repair rate ratio

0.80

0.85

0.90

0.95

1

0 0.05 0.10 0.15 0.20

DG.
6 × 2 GRID

. . .
4 × 3 GRID

. 3 × 4
GRID

.
2 × 6 GRID

Figure 7: Availabilities for Twelve Replicas

Figures 5 to 7 shows the compared availabilities
of the dynamic groups and grid protocols for eight,
nine and twelve replicas respectively. All these
availabilities were computed for values of the failure
rate to repair rate ratio ρ =λ / µ varying between 0
and 0.20. The first value corresponds to perfectly
reliable sites and the latter to sites that are repaired
five times faster than they fail and have an individual
availability of 0.833. The solid line on the top of each
graph represents the availability of the DG protocol
while the dotted lines give the write availabilities of
the grid protocol for various grid organizations.
(Read availabilities are much higher.)

These three graphs display the excellent perfor-
mance of our protocol. We need however to qualify
these findings. Under the assumptions of independent
failures, no partitions and frequent updates, the avai-
lability of the DG protocol is indeed equal to that of

the dynamic-linear voting protocol for the same
number of replicas. The DG protocol would perform
somewhat worse in situations where correlated replica
failures and network partitions are present. For
instance, the simultaneous failure of p replicas
belonging to the same group would immediately dis-
able write access while preventing the DG protocol
from regrouping the remaining live replicas. A net-
work partition that would isolate a whole group of
replicas from the remainder of the quorum set would
have the same effect. There are preventive strategies
that can minimize the probability of such events
occurring. One of these strategies is to spread groups
over the network in such a way that no group entirely
consists of replicas likely to fail simultaneously nor to
be partitioned from the remainder of the quorum set.
This may result in increased network traffic through
the network gateways.

Another issue that was not considered in our
model is the impact of the access rate on the perfor-
mance of the protocol. Since the DG protocol only
detects site failures and network partitions when an
access is attempted, replicated data that are infre-
quently accessed are less likely to have their replicas
promptly regrouped after a site failure or a network
partition. An earlier investigation of the effect of
access rates on the availability of dynamic voting pro-
tocols concluded that access rates of the order of one
access per hour were enough to provide timely detec-
tion of most site failures and network partitions [11].
We can therefore conjecture that the access rates
required to achieve a good performance with the DG
protocol could be easily guaranteed by scheduling a
few dummy accesses every hour.

5. Conclusions
We have presented an efficient replication control
protocol for managing replicated data objects that
have more than five replicas. Like the grid protocol,
our dynamic group protocol requires only O(√ddn)
messages per access to enforce mutual consistency
among n replicas. It differs from the grid protocol by
reorganizing itself every time it detects a change in
the number of available sites or the connectivity of
the network. As a result, it can tolerate n − 2 succes-
sive replica failures and provides a data availability
comparable to that of the dynamic-linear voting pro-
tocol.

More work needs to be done to evaluate the
impact of simultaneous failures and network parti-
tions and to devise grouping strategies minimizing the
likelihood that any such event could disable access to
the replicated data.

Acknowledgements
We thank Elizabeth Pâris for her editorial comments.

References
[1] D. Agrawal and A. El Abbadi, ‘‘The Tree Quorum Pro-

tocol: An Efficient Approach for Managing Replicated
Data,’’ Proc. 16th VLDB Conf. , (1990).

[2] M. Ahamad and M. H. Ammar, ‘‘Performance Charac-
terization of Quorum-Consensus Algorithms for Repli-
cated Data,’’ IEEE TSE , Vol. SE-15, No. 4 (1989), pp.
492-496.

[3] D. Barbara and H. Garcia-Molina, ‘‘Mutual Exclusion
in Partioned Distributed Systems,’’ Distributed Com-
puting , Vol. 1 (1986), pp. 119-131.

[4] S. Y. Cheung, M. Ahamad and M. H. Ammar, ‘‘ The
Grid Protocol: A High Performance Scheme for Main-
taining Replicated Data,’’ Proc. 6th ICDE , (1990), pp.
438-445.

[5] S.B. Davidson, H. Garcia-Molina, and D. Skeen, ‘‘Con-
sistency in Partitioned Networks,’’ ACM Computing
Surveys , Vol. 17, No. 3 (1985), pp. 341-370.

[6] C. A. Ellis, ‘‘Consistency and Correctness of Duplicate
Database Systems,’’ Operating Systems Review , Vol.
11 (1977).

[7] D. K. Gifford, ‘‘Weighted Voting for Replicated
Data,’’ Proc. 7th ACM SOSP , (1979), pp. 150-161.

[8] S. Jajodia and D. Mutchler, ‘‘Enhancements to the Vot-
ing Algorithm,’’ Proc. 13th VLDB Conf. , (1987), pp.
399-405.

[9] A. Kumar, ‘‘Hierarchical Quorum Consensus: A New
Algorithm for Managing Replicated Data,’’ IEEE TC ,
Vol. TC-40, No. 9 (1990), pp. 996-1004.

[10]A. Kumar and S.Y. Cheung, ‘‘A High Availability √ddN
Hierarchical Grid Algorithm for Replicated Data,’’
Information Processing Letters , Vol. 40, (1991), pp.
311-316.

[11]D. D. E. Long and J.-F. Pâris, ‘‘A Realistic Evaluation
of Optimistic Dynamic Voting,’’ Proc. 7th SRDS ,
(1988), pp. 129-137.

[12]J.-F. Pâris and D.D.E. Long, ‘‘On the Performance of
Available Copy Protocols,’’ Performance Evaluation ,
Vol. 11 (1990), pp. 9-30.

[13]J.-F. Pâris, ‘‘Voting with Witnesses: A Consistency
Scheme for Replicated Files,’’ Proc. 6th ICDCS ,
(1986), pp. 606-612.

[14]J.-F. Pâris, ‘‘Efficient Management of Replicated
Data,’’ Proc. 2nd Int. Conf. on Database Theory ,
LNCS # 326, Springer Verlag (1988), pp. 386-409.

[15]C. Pu, J. D. Noe and A. Proudfoot, ‘‘Regeneration of
Replicated Objects: A Technique and its Eden Imple-
mentation,’’ IEEE TSE , Vol. SE-14, No. 7 (1988), pp.
936-945.

[16]R. van Renesse and A. Tanenbaum, ‘‘Voting with
Ghosts,’’ Proc. 8th ICDCS , (1988), pp. 456-462.

[17]P. Triantafillou and D.J. Taylor, ‘‘A New Paradigm for
High Availability and Efficiency in Replicated Data-
bases,’’ Proc. 2nd IEEE SPDS , (1990), pp. 136-143.

BLANK PAGE

