
Experience with PARPC †

Bruce Martin ††

Charles Bergan
Walter Burkhard

Jehan-Franc,ois Pâris †††

Computer Systems Research Group
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, California 92093

ABSTRACT

PARPC provides an interprocess communication mechanism based on the
semantics of a procedure call. PARPC programs always execute a single logical
thread of control but may execute multiple physical threads of control. PARPC
provides users with a well defined, high level network process model of execution
and a familiar program development model supporting heterogeneous, non-
uniform environments. The administrative overhead of PARPC is minimal
because users administer their own distributed programs and existing UNIX
mechanisms for access control and resource accounting are utilized. Our experi-
ences indicate that PARPC has been an effective system for the development
and administration of distributed programs.

1. Introduction

Many distributed algorithms require the capability of sending a message to a set of destina-
tions and getting answers back from some or all of them. Examples of theses algorithms are
replicated data consistency protocols, such as majority consensus voting [Giff79] and available
copies protocol [Bern83], load balancing algorithms, commit and locking protocols, parallel
searches through multiple databases and many distributed software maintenance tasks. The
remote procedure call [BiNe84] does not lend itself well to express these semantics as it can only
model interactions between a single client and a single server [TaRe85].

The parallel procedure call was developed to overcome this limitation [MaBeRu87, Saty86].
A parallel procedure call allows a client process to request the parallel execution of the same pro-
cedure in n different address spaces in parallel.

We present in this paper our experience in designing and using the PARPC system
[MaBeRu87], a parallel remote procedure call system developed at the University of California,
San Diego. The PARPC system came about as a result of the development of the Gemini file
system testbed [BuMaPa87]. Gemini was built for experimenting with protocols maintaining the
consistency of replicated files. While writing the first version of Gemini, we found that producing
code required for communication between machines dominated our development time. The imple-
mentation of remote connections, authentication, remote processes initiation and parameter
hhhhhhhhhhhhhhhhhh
† This work was sponsored in part by grants from the U.C. MICRO Program and NCR Corporation.
†† Author’s current address: Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California

94304.
††† Author’s current address: Department of Computer Science, University of Houston, 4800 Calhoun Road,

Houston, TX 77204-3475.

- 2 -

transmission constituted the bulk of the programming effort and hindered us in our efforts to
experiment with distributed algorithms.

We decided to develop the PARPC system to directly support parallel procedure calls and a
high level model of distributed computation. Furthermore, we decided the system should support
program development, execution and administration in the complex distributed computing environ-
ment we were experiencing in the Department of Computer Science and Engineering at UCSD.

Our distributed computing environment is complex because it consists of heterogeneous
architectures, operating systems, communication protocols and non-uniform file systems. The
environment includes a VAX 11/780, a Pyramid 90X, dozens of ATT 3b2 systems, an ATT 3b15, a
Celerity 1260D, a CCI 6/32, several subnets of SUN workstations and an NCR Tower. While all of
these machines are physically connected through several ethernets, developing and maintaining a
distributed program in such a complex environment is tedious at best. A construct like the V ker-
nel process group, which supports multicasting in an homogeneous environment [ChZw85], would
not apply.

Throughout this paper we discuss how PARPC bridges complex distributed computing
environments. We will refer to a network as homogeneous if it contains a single machine archi-
tecture and a single operating system. Otherwise, it is heterogeneous. We classify a file name
space as uniform if files are globally available through file system calls and named the same from
all sites in the network.

Our overall distributed computing environment is definitely heterogeneous and non-uniform.
However, within this environment, we have homogeneous, uniform subnets (e.g. SUN 3 worksta-
tions with uniformly mounted NFS), heterogeneous and uniform subnets (e.g. VAX and SUN sys-
tems running NFS) and homogeneous, non-uniform subnets (e.g. ATT 3b2s with local file sys-
tems). Thus, we wanted PARPC to gracefully exist in these subenvironments as well. Since the
heterogeneous, non-uniform case is the most general environment, the mechanisms that PARPC
provides to support it automatically accommodate the other environments.

PARPC supports heterogeneous, non-uniform environments by extending the simple, well
understood UNIX model for local program development and execution and system administration.
Because the system uses existing UNIX mechanisms to extend the model, our experience has
been that distributed program development and system administration is easy.

1.1. Status of the PARPC System

PARPC has been ported and PARPC programs execute on most of the systems in our com-
plex environment. We have ported PARPC to the VAX 11/780 running 4.3 BSD, the Pyramid run-
ning OSx, the Sun 3 series running SunOS, the Celerity 1260D running 4.3 BSD, AT&T 3b2 sys-
tems running System V and HP Series 300 systems running HP-UX. In addition, PARPC has
been distributed to approximately fifteen research and educational institutions.

The implementation of a wide range of distributed programs using PARPC demonstrates the
ease of program development and the applicability of the parallel remote procedure call abstrac-
tion. We have used PARPC to implement the nested object scheduler described in [Martin87] and
[Martin88]. PARPC was used to implement the replicated block server described in [CaLoPa87].
Moreover, the programming and administration tools provided with the system are themselves
PARPC programs. These tools are described below.

We now describe our experiences with the PARPC system. In section two we review
related work. Section three describes the PARPC programmer model and shows how a typical
program would be built using PARPC. Section four describes the administrative requirements of
the PARPC system, and section five discusses performance of the PARPC system. More techni-
cal information regarding PARPC can be found in [Martin86] and [MaBeRu87].

- 3 -

2. Related Work

Parallel procedure call is similar to replicated procedure call. [Coop85] Since parallel pro-
cedure call provides the calling code with control over processing the results, it is a more general
construct for expressing distributed algorithms. Traditional remote procedure call was imple-
mented in the Xerox Cedar environment by Birrell and Nelson. [BiNe84] Since then, several
remote procedure call systems have been implemented for UNIX including Courier [Coop83] and
Sun RPC. [Sun 84b] Remote procedure call provides a model of computation that is limited to
both a single logical and physical thread of control. It is an inadequate model for expressing many
distributed algorithms, such as those previously mentioned.

As a remote procedure call system, PARPC is unique in three ways. First, PARPC pro-
grams execute a single logical thread of control but may execute multiple physical threads of con-
trol. PARPC programs appear to be sequential. Secondly, PARPC provides users with a well-
defined, high level network process model of execution and a familiar program development
model. Finally, the system supports program development in heterogeneous, non-uniform
environments.

3. A Programmer’s View of PARPC

We have found that fairly unsophisticated C programmers have been able to quickly develop
distributed programs using PARPC. We believe this is due to the simplicity of the parallel pro-
cedure call construct, the high level model of computation presented to the programmer and the
set of UNIX-like development tools provided with PARPC. We discuss each in turn.

3.1. A Parallel Procedure Call

A parallel procedure call is a structured programming construct that is easy for a program-
mer to understand. Although there may be several physical threads of control in a program mak-
ing parallel procedure calls, there is always a single logical thread of control.

A parallel procedure call executes a procedure in n different address spaces in parallel. The
calling code remains blocked while the n procedures execute. The order in which the n pro-
cedures complete is nondeterministic. As each procedure result becomes available, the caller is
unblocked to execute a statement to process the result of the returned call. After executing the
statement, the caller reblocks to wait for the next result. This continues until the caller breaks out
of the parallel procedure call or until no further results are available.

A parallel procedure, parproc(), is invoked from a C program as follows:

parproc (hl, parameters...) result statement;

The first parameter, hl, identifies the set of hosts where the procedure is to be executed. PARPC
programs manipulate host names as human readable strings.1 The result statement may be a
compound statement and may contain continue or break statements. However, if a break
is executed, all unprocessed results from the parallel procedures become unavailable.

All data are passed and returned via the parameters. Parameters are designated as either
in or out parameters and have copy in and copy out semantics. Since a procedure with no out
parameters cannot return data, the calling code cannot depend on results of the remote pro-
cedure. In such a case, the calling code does not block and result statement is never executed;
the parallel remote procedure call is effectively a multicast. [MeBo76]

PARPC programs may have multiple physical threads of control only if there are no logical
dependencies between the threads. In particular, procedures executing in parallel cannot com-
municate with each other. Furthermore, the calling code can proceed in parallel with the parallel
procedures only if it does not depend on any of their results. These semantics make PARPC
hhhhhhhhhhhhhhhhhh

1 The system provides a library of operations to manipulate lists of hosts. PARPC provides no mechanism
for transparently deciding which hosts to use. Such mechanisms could easily be added on top of PARPC. The
example in figure 4 assumes the hosts come from the user.

- 4 -

programs appear sequential, allowing parallel execution in a very controlled fashion.

The parallel procedure call construct is the only mechanism in which a programmer must
consider the distributed nature of the program. PARPC programmers are never required to be
concerned with connection and authentication protocols, scheduling, data conversion and remote
process initiation. These tasks are appropriately handled and hidden by system software.
PARPC accomplishes this by providing programmers with a uniform, high-level computation
model called a network process.

3.2. The Network Process Model of Computation

A network process is a distributed tree of local processes (Figure 1). The root, called the
client, initiates the computation. Internal nodes, called servers, execute procedures and return
results. Each node, being a local process, has state. However, local state may only be communi-
cated between nodes via parallel procedure calls. All communication is done between levels;
servers cannot communicate among themselves. However, servers may themselves be clients of
other servers.

Network processes retain local process semantics. UNIX process operations, such as
fork(), execve() and exit() are analogously defined for the network process. Network process
integrity is assured by the system. As with local processes, access to resources is controlled for
network processes.

If a machine fails in the network process, the subtree rooted at the failed machine ter-
minates. The code making the parallel procedure call can detect the failure in the result statement
but need not be concerned with orphaned servers. Similarly, if the client fails, servers terminate
automatically.

PARPC supports two server models: user servers and resident servers. User servers are
simpler to use but do not provide the flexibility of the resident server. The user server model
allows ordinary, unprivileged users to develop and execute network processes. User server code
is automatically initiated by the PARPC system. Network process semantics and integrity are
ensured even though the user has no special privileges. The resident server model, on the other
hand, allows privileged resident applications, such as file servers, to be easily constructed.
Server nodes of resident applications are not automatically initiated by the PARPC system and
are given control over the authentication process. The type of server used is a link-time decision
and has no impact on the application code. The PARPC server used to invoke users servers is
itself implemented as a resident server.

client

server

parallel procedure call

server

server server

parallel procedure call

server
client

Figure 1: Example Network Process

- 5 -

3.3. PARPC Program Development

PARPC program development easily integrates into the UNIX environment. Building a
PARPC program consists of the familiar and simple steps of building a UNIX program. PARPC
programs can be built incrementally. Like UNIX programs, PARPC programs are bound together
statically. Global consistency is achieved using existing UNIX tools, such as make [Feld79] and
lint [John79]. New tools provided with the system have familiar UNIX-like interfaces.

Many remote procedure call mechanisms, such as Sun RPC [Sun84a] and the Unix imple-
mentation of Courier [Coop83], utilize a distinct language to represent externalized data. This
forces a program to manipulate both data representations and a programmer to specify a program
in more than one language. PARPC programmers specify the interface between clients and
servers using a subset of C or C++[KeRi78][Stro86]. The interface is given in a header file as a
set of type declarations, procedure declarations and procedure argument specifications. Since
the syntax of the interface is designed to be compatible with C and C++ syntax, the same
specification file can be used by the compiler or lint to check types of parameter lists of procedure
calls and definitions.

Header files containing data type and procedure declarations are processed by a program
called cstub. Cstub produces object code (called stubs) that converts data between local and net-
work representations and calls routines in the PARPC run time libraries. Stubs are linked with
both the application code and the run time libraries to produce the desired PARPC program.

Cstub statically binds client code to server code by storing a network wide unique identifier,
called the cookie, in both the client and server stubs. To ensure consistency of client and server
code, the cookie is dynamically verified when a node of the network process is created.

The C source files produced by cstub are are automatically compiled to produce the follow-
ing three files:

client.o, an object module containing the client stubs,

server.o, an object module containing the server stubs,

defs.h, a header file containing redefinitions of the parallel procedure calls.

PARPC programs are created in three simple steps. Cstub transforms interface
specifications into client and server stubs. Application code is compiled. Finally, each node of the
PARPC program is created by linking application code, the stubs and the run time libraries
together.

For environments where all hosts share a uniform file name space and where each host has
the same machine architecture and operating system, cstub and the C compiler are sufficient for
building PARPC programs. All source code resides in a common location and there is just one
copy of all executable programs. In heterogeneous, non-uniform environments, the executable
code must reside at each machine. Cstub and the C compiler must be executed on each machine
in the system. To facilitate this, PARPC provides the replicated compilers, rcstub and rcc. These
tools are themselves implemented as PARPC programs and execute as network processes.
Through the use of these tools, source code can be stored in a single location. These tools pro-
vide a clean and easy-to-use environment for PARPC program development and maintenance.
Figure 2 shows the development steps for four possible distributed environments.

Uniform Non-uniform
File Name Space File Name Space

Homogeneous cstub intf.h rcstub <machines> intf.h
Architecture cc client rcc <machines> client

and OS cc server rcc <machines> server
mkserver server

Heterogeneous rcstub <machines> intf.h rcstub <machines> intf.h
Architecture rcc <machines> client rcc <machines> client

or OS rcc <machines> server rcc <machines> server

Figure 2: PARPC Development Support.

- 6 -

3.4. An Example

We demonstrate the simplicity of the tools with a non-trivial example. We demonstrate the
construction of a distributed program to balance the load of a set of printers. The client portion of
the program first queries a set of hosts for the status of their respective printers. The client sends
the data to the least busiest printer.

Figure 3 gives printservops.h, the interface between the client and the printer servers.

typedef struct {
char *data;
int data_length;

} string;

remote getprinterload (/* hostlist, out int *load */);

remote printfile (/* hostlist, in string filename, out int *error */);

Figure 3: printservops.h

This file is input to cstub. The interface language is a subset of C that is extended with the key-
words remote, in and out. Cstub generates client and server stubs for the procedures
prefixed by remote. When the C compiler parses the header file, remote, in and out are hid-
den by the C preprocessor. Other than the in and out keywords, parameters can be specified
using either C++ or ANSI C syntax. Thus, compilers that support type checking of parameters
ensure consistency between clients and servers. However, in order to support older C compilers
that do not allow parameter specifications, the interface language allows parameters to be
specified between C comment symbols /* and */.

Figure 4 gives print.c, the client algorithm. After building a list of hosts from the com-
mand line, the parallel procedure, getprinterload(), is executed to find a lightly used printer.
As each procedure result becomes available, the statement following the call to getprinter-
load() is evaluated using the value of load set by the remote procedure. If no failures
occurred and an unused printer was found, the addfrom operation sets printhl to reference
the unused printer. The client then breaks out of the parallel procedure call. The PARPC system
discards all further responses about other printers. Finally, if a printer was indeed found, the file is
printed by executing printfile() on the host referenced by printhl. Such a parallel pro-
cedure call made to a single host is a traditional remote procedure call.

Figure 5 gives printserv.c, the server algorithm.

We now demonstrate how to construct this distributed program in a homogeneous, uniform
environment. An example of this environment is a network of architecturally compatible SUN
workstations with uniformly mounted NFS. These steps could easily be integrated into a make
file.

First the client and server stubs, client.o and server.o, are created as follows:

cstub printservops.h

Cstub automatically places a network wide unique tag, called the cookie, in both client.o and
server.o to ensure consistency between clients and servers. Now the application files are com-
piled.

cc -c print.c printserv.c

Next the client executable program is created. The -l option tells the loader to use the PARPC
client runtime library.

cc -o print print.o client.o -lclient

Finally, the server executable program is created. The -l option tells the loader to use the

- 7 -

#include <par_rpc.h>
#include <defs.h>
#include printservops.h

main(argc,argv)
{

hostlist queryhl, printhl;
int load, error, minload = MAXINT;
/* Parse arguments and build host list for querying printer loads */

:
:

/* Parallel procedure call to get printer load from each
printer given in queryhl. The expression evaluated for
each response finds the least loaded printer and sets
printhl to reference that printer.

*/
getprinterload(queryhl,&load)

if (!host_error(queryhl)) { /* if no system error */
if (load == 0) { /* found an unused printer, use it. */

clearhl(printhl);
addfrom(printhl,queryhl);
break;

}
if (load < minload) { /* found a less used printer, consider it */

clearhl(printhl);
addfrom(printhl,queryhl);
minload=load;

}
}

if (emptyhl(printhl)) {
printf("No printers available\n");
exit(1);

}

/* Remote procedure call to send file name to printer
referenced by printhl. Host_error() indicates whether a system
failure occurred; error returns an application error code.

*/
printfile(printhl,argv[1],&error)

if (host_error(printhl) || error!=0)
printf("Error %d printing %s",error,argv[1]);

}

Figure 4: print.c
PARPC user server runtime library.

cc -o printserv printserv.o server.o -lserver
mkserver printserv

Files containing executable server nodes are automatically invoked by the parent PARPC
server. The mkserver program lets the system know about the new server by creating links to
the server file. The link is named by the directory where the parent PARPC server executes and
the unique cookie. Users own and control access to server files using standard UNIX file access
modes. Since client nodes identify server nodes indirectly via the cookie, users may rename files
containing server nodes without problems.

Next we demonstrate how to construct this same distributed program in a heterogeneous,
non-uniform environment. We will construct the program for a Pyramid system, called beowulf, for
an ATT 3B2 system, called ishtar and for a subnetwork of SUN workstations. The SUN worksta-
tions form a homogeneous and uniform subnet; therefore, we need only construct it using a single
machine, called napoli. The PARPC program will be available from all of the SUN workstations in

- 8 -

#include <par_rpc.h>
#include printservops.h

remote getprinterload (qhl, load)
hostlist qhl;
int *load;

{
/* return current load for local printer */

}

remote printfile (phl, filename, error)
string filename;
int *error;

{
/* print file named by filename on local printer */
/* set error if trouble occurred printing the file */

}

Figure 5: printserv.c
the subnet.

First the client and server stubs are created around the network as follows:

rcstub beowulf:/usr/print/src ishtar:/local/src napoli: printservops.h

Rcstub invokes cstub on hosts beowulf, ishtar and napoli. Cstub creates client.o and
server.o in directory /usr/print/src on beowulf, in /local/src on ishtar and in the
current directory on napoli. Each host is sent a copy of printservops.h, as well as any non-
system include files. To accommodate differences in heterogeneous environments, host-specific
cstub options may be specified on the command line.

Rcstub automatically generates a unique network-wide cookie and sends it as a argument to
each remote invocation of cstub. The cookie globally defines the interface around the network.

Next the application code is compiled around the network as follows:

rcc -c beowulf:/usr/print/src ishtar:/local/src napoli: print.c printserv.c

Rcc invokes the C compiler around the network. As with rcstub, rcc sends all necessary source
files to each host where the compilation is to take place. Arguments to rcc are a list of hosts,
host-specific cc options and default cc options that are applied to all hosts. Rcc may be used to
build non-distributed UNIX programs as well.

With the appropriate options, rcc may be used to invoke the linker around the network to
produce executable PARPC programs. Thus, the client and server executable files are created
around the network as follows:

rcc -o print beowulf:/usr/print/src ishtar:/local/src napoli: print.o client.o -lclient

rcc -o printserv beowulf:/usr/print/src ishtar:/local/src napoli: printserv.o server.o -lserver

To inform the PARPC system about the existence of a new server, rcc automatically invokes the
mkserver program around the network.

4. An Administrator’s View of PARPC

A remote procedure call package affects two areas of system administration: security and
system resources. It must ensure that a remote user cannot gain access to any resources to
which he would normally be denied, and that any resources used by a remote process are
charged to him. UNIX provides simple and elegant mechanisms for both access control and
accounting in a local environment. Our goal was to extend the use of these mechanisms in a
heterogeneous, non-uniform environment. We designed a simple solution. PARPC uses a trans-
lation table which ensures all processes created by a remote user are run as a local equivalent.
This allows the standard UNIX accounting and access control facilities to be used. By supporting

- 9 -

the use of standard UNIX facilities on PARPC programs, the additional administrative overhead of
PARPC is minimal.

4.1. Access control

Access control mechanisms restrict the access capabilities of remote processes. PARPC
extends the UNIX access control mechanisms by propagating user and group identifiers across
hosts. This poses a problem in a heterogeneous network environment since user identifiers are
not necessarily consistent across machines. PARPC provides a translation mechanism which,
given a host and a user identifier, returns the local representative of the user. These equivalen-
cies are given in an installation-supplied network equivalency file which lists equivalent users on
different hosts. For example, on our local computer network, this equivalency file contains the
line:

424@napoli 424@roma 424@thor 417@ishtar 419@beowulf

A network process whose client was created by a user whose (effective) uid is 417 on ishtar is
given (effective) uid 424 on napoli. PARPC also supports the idea of a network group . A net-
work group identifier is network-wide unique integer representing a group existing on all
machines. PARPC allows the administrator to specify a global constant called the minimum
group id . Any groups to which the calling procedure belongs which are above this constant are
propagated to the remote process. This allows for the creation of network wide groups.

This translation scheme requires the secure transmission of the caller’s credentials. We
have implemented this secure transmission through the use of a program called start . Start is
responsible for ascertaining the user id, effective user id, group list (BSD) and effective group id
(System V) of the caller and transmitting them to the server. Start itself is a privileged UNIX pro-
gram and transmits this information to the host via a root only socket. By using a root only socket,
we ensure that no user process can transmit a false identity to the remote host. The start program
tells the remote process which port the caller will be using. This enables the remote process to
verify that no user can surreptitiously break into a communication and gain the access permis-
sions of the caller.

Since the UNIX access control mechanism is utilized, clients or servers may be setuid pro-
grams. This allows PARPC programs to be executed by users for which no local equivalent exists
on remote hosts.

4.2. Server Files

To initiate a remote service, the client must somehow identify the server code he wishes to
use. Storing absolute path names in client programs is inappropriate as file path names can
change. Furthermore, in a heterogeneous or non-uniform environment, absolute path names for
servers must differ. Therefore, indirect server referencing is a requirement of remote procedure
call systems.

The PARPC system has two conflicting goals with regards to the placement of server files:
indirect server referencing and user control. One way to implement indirect server referencing is
to force the servers to be placed in a specific directory on each machine. Such an approach is
used by Courier.[Coop83] However, a common shared directory must be maintained by a system
administrator. Furthermore, once placed in a specific directory, the user has no control over his
program. We have found an interesting solution which supports both indirect server referencing
and direct user control of server files.

Our first idea was to use hard links to maintain two links to the server. One from the user’s
directory, and one from a special PARPC server directory. Unfortunately, hard links cannot span
file systems. Our solution was to create a special directory on each file system which would con-
tain hard links for user servers within that file system. We then have soft links from a global
servers directory into each of the file system specific directories. A PARPC utility called mkserver
creates the necessary links.

- 10 -

This left one problem unsolved: how to clean up the global and local server directories when
the user removes a server file. We chose a straightforward solution. A demon periodically scans
the PARPC directories removing any servers which the user has unlinked (i.e. files with one
remaining hard link).

With our solution for placing server files, PARPC extends the UNIX development and
administration models for distributed programs. Users who develop PARPC programs administer
their own files without the support of a system administrator.

4.3. PARPC Administration Tools

The only requirement placed on an administrator is the maintenance of the user equivalence
file around the network. However, even this minimal requirement proved to be tedious in the
heterogeneous, non-uniform environment at UCSD. To help maintain the equivalence file, we
developed two administration tools. The tools are themselves simple PARPC programs. Reread
executes a parallel procedure at a set of hosts to request that the parent PARPC server reprocess
the user equivalence file. This allows network users to be added or removed without having to
reboot the servers. Rgetuid executes a parallel procedure at a set of hosts to get the local
representative of a user and outputs the information in a format suitable for the user equivalence
file. Just as the program development tools support distributed program development from a sin-
gle location in a heterogeneous, non-uniform environment, reread and rgetuid support administra-
tion from a single location.

By extending the UNIX model of access control, resource accounting, program development
and administration, our experience has been that PARPC administers itself.

5. Performance Measurements of the PARPC System

The PARPC runtime environment has good performance, especially in light of the fact that it
was not implemented in the kernel and that it provides a high level model of computation.

Figure 6 gives timings for null procedure invocation and return using PARPC. PARPC tran-
sparently supports three types of procedure calls. Remote procedure call is a procedure call
made from a process on a local machine to another process on a remote machine. A local
remote procedure call is made between two processes on the same machine. A local PARPC
procedure call preserves PARPC semantics and syntax but is made within the same local pro-
cess. Timings for initial calls are given for both the resident and user server models. Timings for
subsequent calls are the same for both server models. Timings for C function calls are also
included for reference.

Null procedure invocation and return Milliseconds 95% C.I.
Subsequent local remote procedure call 5.766 ±.008
Subsequent remote procedure calls 6.285 ±.008
Initial remote procedure call to resident server 444.22 ±12.8
Initial local remote procedure call to resident server 435.47 ±16.4
Initial remote procedure call to user server 634.06 ±19.4
Initial local remote procedure call to user server 677.26 ±20.6
Local PARPC procedure call 0.139 ±.001
C function call 0.00537 ±.00001

Figure 6: PARPC Communication Overhead Between Two Sun 3/60 Machines
(Average of 128 trials)

The timings reflect communication overhead between two SUN 3/60 workstations connected
by an ethernet.

Subsequent procedure invocations execute in approximately 6 milliseconds. For com-
parison, Sprite OS designers report that an inter-kernel null procedure invocation and return
between two SUN 3/75 workstations takes 2.8 milliseconds. [Oust88] The timings for Sprite only
include execution in the kernel. Our figures reflect a round trip between two user processes.

- 11 -

Invoking the first procedure is substantially more expensive than invoking subsequent pro-
cedures because of overhead executing TCP/IP connection protocols, host name resolution,
PARPC authentication protocols and remote process initiation. The initial call executed at a
resident server does not require invoking a remote process; the first procedure is invoked at a
resident server in approximately 70% of the time it takes to invoke the first procedure at a user
server. The startup time is not a problem for interactive programs and long lived programs. For
programs that make a lot of parallel procedure calls, the initial cost is amortized over future calls.

6. Conclusions

We have described our experiences in designing and using the PARPC system. A program
making parallel procedure calls executes as a network process and has good communication per-
formance.

PARPC supports heterogeneous, non-uniform environments by extending the simple, well
understood UNIX model for local program development and execution and system administration.
Because the system uses existing UNIX mechanisms to extend the model, our experience has
been that PARPC is easy to use and administer.

References
[Bern83] Bernstein, P. and Goodman, N. ‘‘The Failure and Recovery Problem for Replicated Data-

bases.’’ Proceedings of the Second Annual ACM Symposium on Principles of Distributed
Computing, Montreal, 1983. pp 114-122.

[BiNe84] Birrell, A. and Nelson, B. ‘‘Implementing Remote Procedure Calls.’’ ACM Transactions on
Computer Systems, Vol. 2, No. 1 (February 1984) pp 39-59.

[BuMaPa87] Burkhard, W. A., Martin, B. E. and Paris, J. F. ‘‘The Gemini Replicated File System Test-bed.’’
Proceedings of the Third International Conference on Data Engineering, Los Angeles, Califor-
nia.

[CaLoPa87] Carroll, J. L., Long, D.D.E, and Paris, J.F., ‘‘Block Level Consistency off Replicated Files.’’
Proceedings of the Seventh International Conference on Distributed Computing Systems, West
Berlin, West Germany.

[ChZw85] Cheriton, D. R. and Zwanepoel, w. ‘‘Distributed Process Groups in the V Kernel.’’ ACM Tran-
sactions on Computer Systems, Vol. 3, No. 2 (May 1985) pp. 77-107.

[Coop83] Cooper, E. ‘‘Writing Distributed Programs with Courier.’’ UNIX Programmer’s Manual, 4.2
Berkeley Software Distribution, Computer Systems Research Group, Computer Science Divi-
sion, University of California, Berkeley, August, 1983.

[Coop85] Cooper, E. ‘‘Replicated Distributed Programs.’’ Ph.D. Thesis. Technical Report UCB/CSD
85/231. University of California, Berkeley, May, 1985.

[Feld79] Feldman, S.I. ‘‘Make -- A Program for Maintaining Computer Programs."’’ UNIX
Programmer’s Manual, Jan. 1979, Bell Laboratories.

[Giff79] Gifford, D. K. ‘‘Weighted Voting for Replicated Data.’’ Proceedings of the Seventh ACM Sym-
posium on Operating System Principles, 1979, 150-161.

[John79] Johnson, S.C., ‘‘Lint, a C Program Checker.’’ UNIX Programmer’s Manual, Bell Laboratories.

[KeRi78] Kernighan, B. W. and Ritchie, D. M. ‘‘The C Programming Language.’’ Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1978.

[Martin86] Martin, B. E. ‘‘Parallel Remote Procedure Call: Language Reference and Users’ Guide.’’
Technical Report CS-097, UCSD Department of Electrical Engineering and Computer Sci-
ence, July, 1986.

[Martin87] Martin, B. E. ‘‘Modeling Concurrent Activities with Nested Objects.’’ Proceedings of the
Seventh International Conference on Distributed Computing Systems, West Berlin, West Ger-
many.

[Martin88] Martin, B. E., ‘‘Leaf Scheduling of Shared Nested Objects.’’ Technical Report CS-094, UCSD
Department of Computer Science and Engineering. January, 1988.

- 12 -

[MaBeRu87] Martin, B. E., Bergan, C.A., and Russ, Brian, ‘‘PARPC: A System for Parallel Procedure Calls’’
Proceedings of the 1987 International Conference on Parallel Processing, The Pennsylvania
State University Press.

[MeBo76] Metcalfe, R. and Boggs D. ‘‘Ethernet: Distributed packet switching for local computer net-
works.’’ Communications of the ACM, July 1976.

[Oust88] Ousterhout, J., Cherenson, A., Douglis, F., Nelson, M., Welch, B., ‘‘The Sprite Network Operat-
ing System’’ Computer, February 1988.

[Saty86] Satyanarayanan, M. RPC2 User Manual. Rep. CNMU-ITC-84-036, Information Technology
Center Carnegie-Mellon U. (July 1986).

[Stro86] Stroustrup, B. ‘‘The C++ Programming Language.’’ Addison-Wesley, 1986.

[Sun84a] Sun Microsystems, ‘‘External Data Representation Reference Manual.’’ Mountain View, Cali-
fornia, October, 1984.

[Sun84b] Sun Microsystems, ‘‘Remote Procedure Call Reference Manual.’’ Mountain View, California,
October, 1984.

[TaRe85] Tanenbaum, A. S. and R. van Renesse, ‘‘Distributed Operating Systems,’’ ACM Computing
Surveys 17, 4 (Dec. 1985), 419-470.

