Scribe: Wei Guo

Declarative Programming Languages – Lecture by Dr. Rakesh Verma
09/10/08
 COSC 6352 Notes on 09/09/08 Guo 3

“On the Design of Programming Language” by N.Wirth
->Simplicity

· achieved thru
transparence
& clarity of features
& regular structure
& features free from unexpected interactions

· A programming language should have rules that define meaningful programs clearly & unambiguously. [Approaches to semantics]
· in syntax & semantics.
· Simplicity is not to be achieved by generality!

->Abstraction from the same level

· A programming language should not hide machine details in one abstraction & expose them in another.

Example: Pointers in Pascal/C exposing machine details
(There is some control on pointers in Pascal but the pointer in C is the extreme example of exposing machine details. So C is at a lower level than other high-level programming language.)
Arrays, Records, Files … in Pascal hiding machine details
· Can have lots of rules provided that is compensated by the confidence gained in the final program
->Combining features

· A programming language should give an idea of the complexity & effectiveness of the features it offers.

· Transparence is particularly vital with respect to storage allocation & access techniques.[Data Structure]

-> Programming language design is compiler construction [pragmatics]

· Programming language design & compiler constructions are parallel activity [not sequential].

· A successful language must grow out of clear ideas of design goals & of simultaneous attempts to design it in terms of abstract structures and to implement it on a computer & with a small user community.

“Hints on Programming Language Design” by Tony Hoare

->A good programming language must assist the programmer in

3D’s[image: image2.png](D Program Design(Clarity)
(@ Documentation(Readability)
(@ Debugging

->Things to do:
①Simplicity

②Security

· Examples of insecurity: pointers, array index out of bounds, record sizes,…

· Definition of insecurity: any instance in which a language processor does not match the language definition.

③Fast translation

④Efficient object code
⑤Readability

⑥Expressiveness

· the ease with which objects & computations can be represented in a programming language[Functional/Equational/Logic languages are very expressive]

· High expressive power can conflict with ease/efficiency of implementation, can also conflict with simplicity.

⑦Portability

· hurt by features in the programming language or by imprecise or incomplete programming language definition such as order of evaluation.
->Things to avoid:

①automatic coercion & type transfers

· automatic coercion: This is an approach to handle domain incompatibilities or type mismatches.

· Pascal does try to avoid but C is an extreme.

Example:

real x,x1,x2;

int i,i1,i2;

	statement
	description
	possible solution
	Paccal
	C

	x = i;
	harmless type mismatch
	N/A
	allow
	allow

	i = x;
	not harmless
	rounding/truncating
	not allow
	allow

	statement
	possible solution

	x = i1+i2;
	choice 1:Do integer addition & then convert

choice 2: Convert i1 & i2 to real representation & then do real addition

	i = x1+x2;
	Results can be quite different between the 2 choices.

②too much pointers with little control

->Choice of programming language
①Implementation—availability & its efficiency

②Programmer knowledge

③Kind of task—initial prototype versus final product & the constrains in the task or application domain.
④Portability[possible platforms]
⑤Programming environment

⑥Models of computation or paradigm

⑦Syntax & Semantics of the programming language

⑧Maintenance & extensibility (the latter is not so important)

