COSC 6352 - Declarative Programming Languages
Dr. Rakesh Verma’s Lecture Notes – Scribe: Alamu
Lecture date: Sep 04, 2008 Page: 4 of 5
Lecture Time: 11:30 AM – 01:00 PM

__

Language Processors – how to implement a language?
Language processors are of two kinds:

1. Compiler

2. Interpreter

Interpreter:

i)
Simpler to write
ii)
For each statement in the programming language the interpreter calls a subroutine to
process it
Eg: t = s; (assignment statement)

t (target expression

s (source expression

In the above eg: the subroutine will evaluate source expression and the target expression and then will perform the assignment.

Order of evaluation:

E1 +E2, in this which gets evaluated first E1 or E2? - The order does matter!

Proc P (f1, f2) // f1, f2 -> formal parameters
:

:

:

End {P}

Main ()
P (a1, a2) // a1, a2 -> actual parameters
The order of actual parameters evaluation a1, a2 or a2, a1?
Evaluating a1,a2 then do the procedure – eager evaluation

Do the procedure and then when necessary evaluate a1, a2 – lazy evaluation

Which will happen: lazy or eager evaluation?

Watch out for order of evaluations especially in imperative languages and also the number of times it gets evaluated.
In functional languages there are no assignment operations so there is less to worry about order of evaluation.

Compiler:

i) Less easy to write

ii) Translates or transforms a program in one programming language into an equivalent program in another language
Advantages of an interpreter:

1. Useful during program development

2. Does not pay a penalty for unreachable statements
3. More help on run time errors

Advantages of a compiler:

1. Compiled code usually runs faster

2. More access to machine

3. Code is compiled few number of times and executed many times

Compiler:

[image: image1]
Phases of Compilation:

[image: image2]
Tokens – Keywords, punctuation marks, identifiers, operators etc

Eg: a = b + a; is broken down to

(id, ptr1), (=, nil), (id, ptr2), (+, nil), (id, ptr1) where ptr is pointer to symbol table

Syntactic Analysis or Parsing – In parsing we apply a context-free grammar to determine whether the program is well-formed syntactically (top-down, bottom-up)

Not all rules of a programming language can be captured by a context-free grammar.

Some features of Imperative Languages - 3 key principles:

1. Principle of Correspondence

2. Principle of Qualification

3. Abstraction Principle

Semantics: Semantics of imperative languages requires the concept of a state to transmit the effects of assignments. Because the target of an assignment can be a complicated expression not just a simple identifier we partition the state into two components.
State has 2 components:
1. environment – keep track of the effects of definitions
2. store – keep track of the effects of commands

state -> <env, store>

We have 2 components because target in assignment statement can be complex.

D: <e, s> (<e’, s> (usually)

Certain kinds of definitions affect the store – these are called declarations

D: <e, s> (<e’, s’> (general)

What is the store? The store is a mapping of locations to values (values are called storable values)

Store: locations (values

Locations? Abstraction of the memory of the machine

All we require is that 2 locations can be tested for equality.

l: <e, s> (<e, s’>

E: <e, s> (v * <e, s’>
COMPILER

 Source Program in

Object Program in

Source Programming Language

Object Programming Language

Source Program

(string of characters)

Syntactic Analysis

Token String

Semantic Analysis

Parse Tree

Lexical Analysis

Abstract Program

Code Generation

Object Program

Symbol Table

(Data Structure)

