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Abstract - Information security is an issue of serious global 
concern. The complexity, accessibility, and openness of the 
Internet have served to increase the security risk of information 
systems tremendously. This paper concerns intrusion detection. 
We describe approaches to intrusion detection using neural 
networks and support vector machines. The key ideas are to 
discover useful patterns or features that describe user behavior 
on a system, and use the set of relevant features to build 
classifiers that can recognize anomalies and known intrusions, 
hopefully in real time. Using a set of benchmark data from a 
KDD (Knowledge Discovery and Data Mining) competition 
designed by DARPA, we demonstrate that eficient and accurate 
classifiers can be built to detect intrusions. We compare the 
performance of neural networks based, and support vector 
machine based, systems for intrusion detection. 

I. Introduction 

Information assurance is an issue of serious global concern. 
The Internet has brought about great benefits to the modem 
society; meanwhile, the rapidly increasing connectivity and 
accessibility to the Intemet has posed a tremendous security 
threat. Malicious usage, attacks, and sabotage have been on 
the rise as more and more computers are put into use. 
Connecting information systems to networks such as the 
Internet and public telephone systems W h e r  magnifies the 
potential for exposure through a variety of attack channels. 

This paper concems intrusion detection, an important issue 
in defensive information warfare. We present the use of 
neural networks and support vectors machines for intrusion 
detection of information systems. Since most of the intrusions 
can be located by examining patterns of user activities, many 
IDSs have been built by utilizing the recognized attack and 
misuse patterns. Using neural networks for intrusion 
detection has been done within the security community 
[1,7,8,10,11]. In our experiments, the neural networks and 
support vector machines are trained with normal user activity 
and attack patterns. The data we used originated from MIT’s 
Lincoln Labs. It was developed for KDD competition by 
DARPA and is considered a standard benchmark for intrusion 
detection evaluations. Our goal for intrusion detection is to 
detect both anomalies and misuses. The approach is to train 
the neural networks or support vector machines to learn the 
normal behavior and attack patterns; then significant 
deviations from normal behavior are flagged as attacks. We 
begin by giving basic definitions and terms in the next section. 

11. Intrusion 

Intrusion can be defined as any set of actions that attempt 
to compromise the integrity, confidentiality or availability of 
a resource. In the context of information systems, intrusion 
refers to any unauthorized access, unauthorized attempt to 
access or damage, or malicious use of information resources. 
Intrusion can be categorized into two classes, anomaly 
intrusions and misuse intrusions. 

Anomalies are deviations from normal usage behavior. 
Misuses, on the other hand, are recognized patterns of attack 
[2]. While misuse patterns are often simpler to process and 
locate, it is often the anomaly patterns that will help to locate 
problems. As misuses are recognized patterns of attack, the 
detection system tends to fail when novel attack methods are 
implemented. Detection of anomaly patterns is 
computationally expensive because of the overhead of 
keeping track of, and possibly updating several system profile 
metrics, as it must be tailored system to system, and 
sometimes even user to user, due to the fact behavior patterns 
and system usage vary greatly. 

A. Intrusion Detection 

The most popular way to detect intrusions is by using the 
audit data generated by the operating system. Since almost all 
activities are logged on a system, it is possible that a manual 
inspection of these logs would allow intrusions to be detected. 
It is important to analyze the audit data even after an attack 
has occurred to determine the extent of damage sustained; 
this analysis also helps in tracking down the attackers and in 
recording the attack pattems for future detection. A good IDS 
that can be used to analyze audit data for such insights makes 
a valuable tool for information systems. 

The idea behind anomaly detection is to establish each 
user’s normal activity profile, and to flag deviations from the 
established profile as possible intrusion attempts. A main 
issue concerning misuse detection is how to develop 
signatures that include all possible attacks to avoid false 
negatives, and how to develop signatures that do not match 
non-intrusive activities to avoid false positives. Though false 
negatives are frequently considered more serious, the 
selection of threshold levels is important so that neither of the 
above problems is unreasonably magnified. 

0-7803-7278-6/02/$10.00 02002 IEEE 1702 

mailto:cs.nmt.edu


B. Intrusion Detection Systems TABLE 1 : A'ITACKS USED IN DARPA EVALUATION 

Intrusion detection systems (IDS) [9] are designed to 
identify-preferably in real time-unauthorized use, misuse and 
attacks on information systems. IDSs maintains a set of 
historical profiles or recorded profiles for users, matches an 
audit record with appropriate profile, updates the profile 
whenever necessary, and reports any anomalies detected. An 
IDS does not usually perform any action to prevent 
intrusions; its main function is to alert the system 
administrators that there is a possible security violation; as 
such it is a proactive tool rather than a reactive tool. IDSs are 
classified into two types: host based IDS and network based 
IDS. A host based IDS monitors all the activity on a single 
information system host. It ensures none of the information 
system security policies are being violated. A network IDS 
monitors activities on a whole network and analyzes traffic 
for potential security breaches or violations. 

One of the main problems with IDSs is the overhead, 
which can become unacceptably high. To analyze system 
logs, the operating system must keep information regarding 
all the actions performed, which invariably results in huge 
amounts of data, requiring disk space and CPU resource. 
Next, the logs must be processed to convert into a 
manageable format and then compared with the set of 
recognized misuse and attack patterns to identify possible 
security violations. Further, the stored patterns need be 
continually updated, which would normally involve human 
expertise. An intelligent, adaptable and cost-effective tool 
that is capable of (mostly) real-time intrusion detection is the 
goal. 

III. DARPA Data for Intrusion Detection 

The data was acquired from the 1998 DARF'A intrusion 
detection evaluation program. They set up an environment to 
acquire raw TCP/IP dump data for a local-area network 
(LAN) simulating a typical U.S. Air Force LAN. They 
operated the LAN as if it was a true environment, but blasted 
with multiple attacks. For each TCP/IP connection, 41 
various quantitative and qualitative features were extracted. 

Attacks fall into four main categories: , 

1. DOS: denial of service 
2. R2L: unauthorized access from a remote machine 
3. U2R: unauthorized access to local super user (root) 

4. Probing: surveillance and other probing 
privileges 

Table 1 shows 32 different exploits that were used in the 
1998 DARPA intrusion detection evaluation. This table 
presents attacks broken up into categories by type and 
operating system. 

Denial of 
service 

Remote to 
user 

User to super- 
user 

Probing 

Sick 
Mail bomb 
Neptune 
Ping of death 
Process table 
Smurf 
Syslogd 
UDP storm 
Dictionary 
Ftp-write 
Guest 
Phf 
Xlock 
Xnsnoop 

Eject 
Ffbconfig 
Fdformat 

Sick 
Mail bomb 
Neptune 
Ping of death 
Process table 
Smurf 

Sick 
Mail bomb 
Neptune 
Ping of death 
Process table 
Smurf 

Syslogd Syslogd 
UDP storm UDP storm 

Ftp-write 
Guest Guest 
Phf Imap 
Xlock Named 
xnsnoop Phf 

Sendmail 
Xlock 
xnsnoop 

Load module Per1 
Ps Xterm 

IP sweep 

Saint Saint Saint 

A. Denial of Service Attack 

A denial of service attack is a class of attacks in which an 
attacker makes some computing or memory resource too busy 
or too full to handle legitimate requests, or denies legitimate 
users access to a machine. Examples are Apache5 Back, 
Land, Mailbomb, SYN Flood, Ping of death, Process table, 
Smurf, Syslogd, Teardrop, Udpstorm. 

B. User to Root Attacks 

User to root exploits are a class of attacks in which an 
attacker starts out with access to a normal user account on the 
system and is able to exploit vulnerability to gain root access 
to the system. Examples are Eject, Ffbconfig, Fdformat, 
Loadmodule, Perl, Ps, Xterm. 

C. Remote to User Attack 

A remote to user attack is a class of attacks in which an 
attacker sends packets to a machine over a network? but who 
does not have an account on that machine; exploits some 
vulnerability to gain local access as a user of that machine. 
Examples are Dictionary, Ftp-write, Guest, Imap, Named, 
Phf, Sendmail, Xlock, Xsnoop. 

D. Probing 

Probing is a class of attacks in which an attacker scans a 
network of computers to gather information or find known 
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vulnerabilities. An attacker with a map of machines and 
services that are available on a network can use this 
information to look for exploits. Examples are Ipsweep, 
Mscan, Nmap, Saint, Satan. 

Count 

Serror-rate 

Remr-rate 

Same-srv-rate 

Diff-srv-rate 

E. List of Features 

Number of Continuous 
connections to the 
same host as the 
current connection in 
the past two seconds 
% Of connections that Continuous 
have "SYN" errors 
% Of connections that Continuous 
have "REP' errors 
% Of connections to continuous 
the same service 
% Of connections to Continuous 
different services 

TABLE 2: LIST OF FEATURES 
(KDDCUP-99 TASK DESCRIPTION [16]) 

Num-shells 

Num-access-files 

Num-ou tbound-cmds 

Is-hot-login 

Duration Length (number of 
seconds) of the 

creation operations 
Number of shell 
prompts 
Number of operations 
on access control 
files 
Number of outbound 
commands in an QI 
session 
1 if the login belongs 
to the "hot" list; 0 

I e.g. tcp, udp, etc. 
Service I Network service on 

Is_guest-login 

the destination, e.g., 

h m  source to 
destination 

otherwise 
1 if the login is a 
"guest' login; 0 

~. 

Dst .bytes I Number of data bytes - 
from destination to 
source 

Flag Normal or error status 
of the connection 

Land 1 if connection is 
h d t o  the same 
host/port; 0 
otherwise 

fragments 
Wronghgment Number of "wrong" 

urgent Number of urgent 
ackets 

Number of "hot" 
indicators 

Num-failed-logins Number of failed 

Logged in 1 if successllly 
logged in; 0 

"commxnised" 
conditions 
1 if root shell is 
obtained, 0 otherwise 
1 if "su m t "  

Root-shell 

SU-attempted . 
I command attempted; 
I ootherwise 

Nun-root I Number of "root" 

I otherwise 
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Discrete 

Continuous 

Discrete I 
Continuous I 

Continuous 

Continuous1 

Srv-count Number of Continuous 
connections to the 
same service as the 
current connection in 

Srv serror rate - -  I have 'W"" errors I 
Srv rerror rate I % Ofconnections that I Continuous - -  I have"REJ"errors I 
Srv diff host rate I % Ofconnections to I Continuous - - -  I differenthosts I 

IV. SVM Intusion Detection System 

The construction of an SVM intrusion detection system 
consists of three phases: 

* Preprocessing: using automated parsers to process the 
randomly selected raw TCP/P dump data in to 
machine-readable form. 

* Training: in this process SVM is trained on different 
types of attacks and normal data. The data have 4 1 
input features and fall into two classes: normal (+1) 
and attack (-1). 

* Testing: measure the performance on testing data. 

A.  Support Vector Machines 

Support vector machines, or SVMs, are learning machines 
that plot the training vectors in high-dimensional feature 
space, labeling each vector by its class. SVMs view the 
classification problem as a quadratic optimization problem. 
They combine generalization control with a technique to 
avoid the "curse of dimensionality" by placing an upper 
bound on the margin between the different classes, making it 
a practical tool for large and dynamic data sets. SVMs 
classify data by determining a set of support vectors, which 
are members of the set of training inputs that outline a hyper 
plane in feature space [ 121. 

The SVMs are based on the idea of structural risk 
minimization, which minimizes the generalization error, i.e. 
true error on unseen examples. The number of free 
parameters used in the SVMs depends on the margin that 
separates the data points but not on the number of input 
features, thus SVMs do not require a reduction in the number 
of features in order to avoid overfitting. SVMs provide a 
generic mechanism to fit the surface of the hyper plane to the 
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data through the use of a kernel function. The user may 
provide a hc t ion ,  such as a linear, polynomial, or sigmoid 
curve, to the SVMs during the training process, which selects 
support vectors along the surface of this function. This 
capability allows classifying a broader range of problems. 
The primary advantage of SVMs is binary classification and 
regression that they provide to a classifier with a minimal 
VC-dimension [ 121, which implies' low expected probability 
of generalization errors. In our case all intrusions are 
classified as +1, and normal data are classified as -1. All the 
SVMs experiments described below use the freeware package 
SVM light [ 131. 

There are two main reasons that we experiment with SVMs 
for intrusion detection. The first is speed as real-time 
performance is of primary importance to intrusion detection 
systems, any classifier that can potentially outrun neural 
networks is worth considering. The second reason is 
scalability: SVMs are relatively insensitive to the number of 
data points and the classification complexity does not depend 
on the dimensionality of the feature space [14], so they can 
potentially learn a larger set of patterns and be able to scale 
better than neural networks. Once the data is classified into 
two classes, a suitable optimizing algorithm can be used if 
necessary for further feature identification, depending on the 
application [14]. 

B. The development of SVM IDS 

The data is first partitioned into two classes: normal and 
attack, where attack represents a collection of 22 different 
attacks belonging to the four classes described in section 3.1. 
The objective is to separate normal (1) and intrusive (-1) 
patterns. 

1) Training: The SVMs are trained with normal and 
intrusive data. Our processed data consists of 14292 data 
points: 7312 for training, 6980 for testing. Each point is 
located in the n-dimensional space, with each dimension 
corresponding to a feature of the data point. We used a 
training set of 7312 data points with 41 features [16]. Data 
points contain actual attacks and normal usage patterns. Data 
points are used for training using the RBF (radial bias 
function) kernel option; an important point of the kernel 
function is that it defines the feature space in which the 
training set examples will be classified [13]. 

During the training process the default regularization 
parameter is set to c = 1000, with optimization done for 2733 
iterations. During training only 6 data points from the 7312 
training set are misclassified. A difference of 0.00072 was 
achieved with the CPU run time of 17.77 seconds. The 
number of support vectors used in the training process were 
204, including 29 at the upper bound. Linear loss during the 
process was 17.78295. The normalization of the weight 

vector (w) during the training process is 126.10847; 
normalization of the longest example vector (x) is 1.0000. 
The number of kernel evaluations is 3 148450. The estimated 
VC-dimension [12] of the classifier is less than or equal to 
31807.69124. 

2) Testing: We apply SVMs to a set of intrusion data as 
described in Section 3 above. In our case we use the SVMs 
to differentiate intrusions and normal activities. The testing 
set, consisting of 6980 data points with 41 features, received 
99.50% accuracy, with a total runtime of 1.63 sec. The 
following graph shows the results. 

SVM detection 

I i 

Fig. 1. SVMs results on KDD intrusion detection (outputs 1 denote 1 or 
normal; outputs 2 denote -1 or attack) 

V. The Neural Network Intrusion Detection System 

The neural network intrusion detection system consists of 
three phases: 

* Using automated parsers to process the raw TCPAP 
dump data in to machine-readable form. 

* Training: neural network is trained on different types 
of attacks and normal data. The input has 41 features 
and the output assumes one of two values: intrusion 
(22 different attack types), and normal data. 

data. 
* Testing: performed on the test set containing 6980 

A. Experiments Using Neural Networks 

Multi-layer, feed-forward networks are used. The scaled 
conjugate gradient descent algorithm, available fiom the 
MATLAB package, is used for training. 

Our data consists of the same set of 14292 data points. The 
set of 7312 training data is divided in to two classes: normal 
and attack, where the attack is a collection of 22 different 
types of instances that belong to the four classes described in 
section 3, and the other is the normal data. 
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In the study we use three different feed-forward neural 
networks with the following architectures: 

Network A: Clayer, 4 1-20-20-20- 1. 
Network B: 3-layer, 4 1-40-40- 1. 
Network C: 3-layer, 41-25-20-1. 

We use an initial training set of 7312 normalized input- 
output pairs consisting attack pattems, and normal user 
pattems. 

I )  Training Neural Networks: The training of the neural 
networks was conducted using feed forward back propagation 
algorithm using scaled conjugate gradient decent or SCG for 
learning. The network was set to train until the desired mean 
square error of 0.001 was met. During the training process the 
goal was met at 394 epochs with a performance of 
0.0009962988, Fig 2 shows the training process. The purpose 
of having multiple networks is to find a suitable 
architecture that can detect at a faster speed with low error 
rate, minimizing false positives and false negatives. Out of all 
the networks architectures used, network B performs the best 
detection with 99.25% accuracy. 

Figure 2 below demonstrates extremely good results of the 
training of network B that converges in 394 epochs, while 
other methods we tried (Gradient Descent with Adaptive 
Linear Back Propagation and Gradient Descent with 
Momentum and Adaptive Linear Back Propagation) took 
longer. 

Fig. 2. Neural network haining on KDD intrusion detection data-subset 

2) Testing the Neural Network: The testing set, as before, 
consisting of 6980 data points with 41 features. We have 
three different feed-forward, multi-layer neural network 
architectures. The following figure shows the results of three 
different architectures: Network A performed with an 
accuracy of 99.05%; network B achieved an accuracy of 
99.25%; network C performed with an accuracy of 99%. 

I NN detection 

1 2.5 I I 

m 

2 
2 1.5 

G I  

O5 0 5 
- - b " ~ ~ ~ ~ ~ ~ g  

Data points 

+ NN [41.40,40,1] 

-&- NN [41,25,20,1] -.X- Actual 
+ NN [41,20,20,20.1] 

Fig. 3. Neural network testing on KDD intrusion detection 

VI. Comparison of SVMs and Neural Networks 

Figure 4 below shows a comparison of the results of (the 
best performing) neural network and support vector machines 
on the KDD data subset selected for testing. Due to the large 
size of the testing set, only thirty data points are shown here. 
As can be seen, the SVM IDS has a slightly higher rate of 
making the correct detection. 

Comparison of NN's and SVM's 

I + NN prediction + SVM prediction -b- Actual I 

Fig. 4. Neural network and SVMs testing on two classes attackhormal data 

VII. Conclusion 

We have constructed intrusion detection systems using 
neural networks and support vector machines, and tested their 
performance on a set of benchmark DARPA data. It is 
observed that both the neural networks and SVMs deliver 
highly accurate results (greater than 99% accuracy on testing 
set) and show compatible level of performance. The training 
time for SVMs is significantly shorter (17.77 sec vs. 18 min), 
an advantage that becomes rather important in situations 
where retraining needs to be done quickly (e.g., when new 
attack pattems are discovered). The running time of SVMs is 
also notably shorter. On the other hand, SVMs can only make 
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binary classifications, which is a severe disadvantage where 
the intrusion detection system requires multiple-class 
identifications (e.g., all 22 different types of attacks need to 
be differentiated). 

Statistical learning techniques are being used more 
extensively in recent intrusion detection systems, owing to 
their adaptability and their generalization capability regarding 
new attack signatures that would need to be ‘learned’ 
quickly? once discovered? by an IDS. Whether to use SVMs 
or neural networks in implementing an intrusion detector 
depends on the particular type of intrusion (anomaly or 
misuse) that is under watch, as well as other security policy 
requirements. SVMs have great potential to be used in place 
of neural networks due to its scalability (large data sets and 
large number of features in patterns can easily overwhelm 
neural networks) and faster training and running time. On the 
other hand, neural networks have already proven to be usehl 
in many IDSs, and are especially suited for multi-category 
classifications. 
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