
Intrusion Detection Using Neural Networks and Support Vector Machines

Srinivas Mukkamala, Guadalupe Janoski, Andrew Sung
{ srinivas, silfalco, sung} @cs.nmt.edu

Department of Computer Science
New Mexico Institute of Mining and Technology

Socorro New Mexico, 87801 USA

Abstract - Information security is an issue of serious global
concern. The complexity, accessibility, and openness of the
Internet have served to increase the security risk of information
systems tremendously. This paper concerns intrusion detection.
We describe approaches to intrusion detection using neural
networks and support vector machines. The key ideas are to
discover useful patterns or features that describe user behavior
on a system, and use the set of relevant features to build
classifiers that can recognize anomalies and known intrusions,
hopefully in real time. Using a set of benchmark data from a
KDD (Knowledge Discovery and Data Mining) competition
designed by DARPA, we demonstrate that eficient and accurate
classifiers can be built to detect intrusions. We compare the
performance of neural networks based, and support vector
machine based, systems for intrusion detection.

I. Introduction

Information assurance is an issue of serious global concern.
The Internet has brought about great benefits to the modem
society; meanwhile, the rapidly increasing connectivity and
accessibility to the Intemet has posed a tremendous security
threat. Malicious usage, attacks, and sabotage have been on
the rise as more and more computers are put into use.
Connecting information systems to networks such as the
Internet and public telephone systems W h e r magnifies the
potential for exposure through a variety of attack channels.

This paper concems intrusion detection, an important issue
in defensive information warfare. We present the use of
neural networks and support vectors machines for intrusion
detection of information systems. Since most of the intrusions
can be located by examining patterns of user activities, many
IDSs have been built by utilizing the recognized attack and
misuse patterns. Using neural networks for intrusion
detection has been done within the security community
[1,7,8,10,11]. In our experiments, the neural networks and
support vector machines are trained with normal user activity
and attack patterns. The data we used originated from MIT’s
Lincoln Labs. It was developed for KDD competition by
DARPA and is considered a standard benchmark for intrusion
detection evaluations. Our goal for intrusion detection is to
detect both anomalies and misuses. The approach is to train
the neural networks or support vector machines to learn the
normal behavior and attack patterns; then significant
deviations from normal behavior are flagged as attacks. We
begin by giving basic definitions and terms in the next section.

11. Intrusion

Intrusion can be defined as any set of actions that attempt
to compromise the integrity, confidentiality or availability of
a resource. In the context of information systems, intrusion
refers to any unauthorized access, unauthorized attempt to
access or damage, or malicious use of information resources.
Intrusion can be categorized into two classes, anomaly
intrusions and misuse intrusions.

Anomalies are deviations from normal usage behavior.
Misuses, on the other hand, are recognized patterns of attack
[2]. While misuse patterns are often simpler to process and
locate, it is often the anomaly patterns that will help to locate
problems. As misuses are recognized patterns of attack, the
detection system tends to fail when novel attack methods are
implemented. Detection of anomaly patterns is
computationally expensive because of the overhead of
keeping track of, and possibly updating several system profile
metrics, as it must be tailored system to system, and
sometimes even user to user, due to the fact behavior patterns
and system usage vary greatly.

A. Intrusion Detection

The most popular way to detect intrusions is by using the
audit data generated by the operating system. Since almost all
activities are logged on a system, it is possible that a manual
inspection of these logs would allow intrusions to be detected.
It is important to analyze the audit data even after an attack
has occurred to determine the extent of damage sustained;
this analysis also helps in tracking down the attackers and in
recording the attack pattems for future detection. A good IDS
that can be used to analyze audit data for such insights makes
a valuable tool for information systems.

The idea behind anomaly detection is to establish each
user’s normal activity profile, and to flag deviations from the
established profile as possible intrusion attempts. A main
issue concerning misuse detection is how to develop
signatures that include all possible attacks to avoid false
negatives, and how to develop signatures that do not match
non-intrusive activities to avoid false positives. Though false
negatives are frequently considered more serious, the
selection of threshold levels is important so that neither of the
above problems is unreasonably magnified.

0-7803-7278-6/02/$10.00 02002 IEEE 1702

mailto:cs.nmt.edu

B. Intrusion Detection Systems TABLE 1 : A'ITACKS USED IN DARPA EVALUATION

Intrusion detection systems (IDS) [9] are designed to
identify-preferably in real time-unauthorized use, misuse and
attacks on information systems. IDSs maintains a set of
historical profiles or recorded profiles for users, matches an
audit record with appropriate profile, updates the profile
whenever necessary, and reports any anomalies detected. An
IDS does not usually perform any action to prevent
intrusions; its main function is to alert the system
administrators that there is a possible security violation; as
such it is a proactive tool rather than a reactive tool. IDSs are
classified into two types: host based IDS and network based
IDS. A host based IDS monitors all the activity on a single
information system host. It ensures none of the information
system security policies are being violated. A network IDS
monitors activities on a whole network and analyzes traffic
for potential security breaches or violations.

One of the main problems with IDSs is the overhead,
which can become unacceptably high. To analyze system
logs, the operating system must keep information regarding
all the actions performed, which invariably results in huge
amounts of data, requiring disk space and CPU resource.
Next, the logs must be processed to convert into a
manageable format and then compared with the set of
recognized misuse and attack patterns to identify possible
security violations. Further, the stored patterns need be
continually updated, which would normally involve human
expertise. An intelligent, adaptable and cost-effective tool
that is capable of (mostly) real-time intrusion detection is the
goal.

III. DARPA Data for Intrusion Detection

The data was acquired from the 1998 DARF'A intrusion
detection evaluation program. They set up an environment to
acquire raw TCP/IP dump data for a local-area network
(LAN) simulating a typical U.S. Air Force LAN. They
operated the LAN as if it was a true environment, but blasted
with multiple attacks. For each TCP/IP connection, 41
various quantitative and qualitative features were extracted.

Attacks fall into four main categories: ,

1. DOS: denial of service
2. R2L: unauthorized access from a remote machine
3. U2R: unauthorized access to local super user (root)

4. Probing: surveillance and other probing
privileges

Table 1 shows 32 different exploits that were used in the
1998 DARPA intrusion detection evaluation. This table
presents attacks broken up into categories by type and
operating system.

Denial of
service

Remote to
user

User to super-
user

Probing

Sick
Mail bomb
Neptune
Ping of death
Process table
Smurf
Syslogd
UDP storm
Dictionary
Ftp-write
Guest
Phf
Xlock
Xnsnoop

Eject
Ffbconfig
Fdformat

Sick
Mail bomb
Neptune
Ping of death
Process table
Smurf

Sick
Mail bomb
Neptune
Ping of death
Process table
Smurf

Syslogd Syslogd
UDP storm UDP storm

Ftp-write
Guest Guest
Phf Imap
Xlock Named
xnsnoop Phf

Sendmail
Xlock
xnsnoop

Load module Per1
Ps Xterm

IP sweep

Saint Saint Saint

A. Denial of Service Attack

A denial of service attack is a class of attacks in which an
attacker makes some computing or memory resource too busy
or too full to handle legitimate requests, or denies legitimate
users access to a machine. Examples are Apache5 Back,
Land, Mailbomb, SYN Flood, Ping of death, Process table,
Smurf, Syslogd, Teardrop, Udpstorm.

B. User to Root Attacks

User to root exploits are a class of attacks in which an
attacker starts out with access to a normal user account on the
system and is able to exploit vulnerability to gain root access
to the system. Examples are Eject, Ffbconfig, Fdformat,
Loadmodule, Perl, Ps, Xterm.

C. Remote to User Attack

A remote to user attack is a class of attacks in which an
attacker sends packets to a machine over a network? but who
does not have an account on that machine; exploits some
vulnerability to gain local access as a user of that machine.
Examples are Dictionary, Ftp-write, Guest, Imap, Named,
Phf, Sendmail, Xlock, Xsnoop.

D. Probing

Probing is a class of attacks in which an attacker scans a
network of computers to gather information or find known

0-7803-7278-6/02/$10.00 02002 IEEE 1703

vulnerabilities. An attacker with a map of machines and
services that are available on a network can use this
information to look for exploits. Examples are Ipsweep,
Mscan, Nmap, Saint, Satan.

Count

Serror-rate

Remr-rate

Same-srv-rate

Diff-srv-rate

E. List of Features

Number of Continuous
connections to the
same host as the
current connection in
the past two seconds
% Of connections that Continuous
have "SYN" errors
% Of connections that Continuous
have "REP' errors
% Of connections to continuous
the same service
% Of connections to Continuous
different services

TABLE 2: LIST OF FEATURES
(KDDCUP-99 TASK DESCRIPTION [16])

Num-shells

Num-access-files

Num-ou tbound-cmds

Is-hot-login

Duration Length (number of
seconds) of the

creation operations
Number of shell
prompts
Number of operations
on access control
files
Number of outbound
commands in an QI
session
1 if the login belongs
to the "hot" list; 0

I e.g. tcp, udp, etc.
Service I Network service on

Is_guest-login

the destination, e.g.,

h m source to
destination

otherwise
1 if the login is a
"guest' login; 0

~.

Dst .bytes I Number of data bytes -
from destination to
source

Flag Normal or error status
of the connection

Land 1 if connection is
h d t o the same
host/port; 0
otherwise

fragments
Wronghgment Number of "wrong"

urgent Number of urgent
ackets

Number of "hot"
indicators

Num-failed-logins Number of failed

Logged in 1 if successllly
logged in; 0

"commxnised"
conditions
1 if root shell is
obtained, 0 otherwise
1 if "su m t "

Root-shell

SU-attempted .
I command attempted;
I ootherwise

Nun-root I Number of "root"

I otherwise

0-7803-7278-6/02/$10.00 02002 IEEX

Discrete

Continuous

Discrete I
Continuous I

Continuous

Continuous1

Srv-count Number of Continuous
connections to the
same service as the
current connection in

Srv serror rate - - I have 'W"" errors I
Srv rerror rate I % Ofconnections that I Continuous - - I have"REJ"errors I
Srv diff host rate I % Ofconnections to I Continuous - - - I differenthosts I

IV. SVM Intusion Detection System

The construction of an SVM intrusion detection system
consists of three phases:

* Preprocessing: using automated parsers to process the
randomly selected raw TCP/P dump data in to
machine-readable form.

* Training: in this process SVM is trained on different
types of attacks and normal data. The data have 4 1
input features and fall into two classes: normal (+1)
and attack (-1).

* Testing: measure the performance on testing data.

A. Support Vector Machines

Support vector machines, or SVMs, are learning machines
that plot the training vectors in high-dimensional feature
space, labeling each vector by its class. SVMs view the
classification problem as a quadratic optimization problem.
They combine generalization control with a technique to
avoid the "curse of dimensionality" by placing an upper
bound on the margin between the different classes, making it
a practical tool for large and dynamic data sets. SVMs
classify data by determining a set of support vectors, which
are members of the set of training inputs that outline a hyper
plane in feature space [121.

The SVMs are based on the idea of structural risk
minimization, which minimizes the generalization error, i.e.
true error on unseen examples. The number of free
parameters used in the SVMs depends on the margin that
separates the data points but not on the number of input
features, thus SVMs do not require a reduction in the number
of features in order to avoid overfitting. SVMs provide a
generic mechanism to fit the surface of the hyper plane to the

1704

data through the use of a kernel function. The user may
provide a hc t ion , such as a linear, polynomial, or sigmoid
curve, to the SVMs during the training process, which selects
support vectors along the surface of this function. This
capability allows classifying a broader range of problems.
The primary advantage of SVMs is binary classification and
regression that they provide to a classifier with a minimal
VC-dimension [121, which implies' low expected probability
of generalization errors. In our case all intrusions are
classified as +1, and normal data are classified as -1. All the
SVMs experiments described below use the freeware package
SVM light [131.

There are two main reasons that we experiment with SVMs
for intrusion detection. The first is speed as real-time
performance is of primary importance to intrusion detection
systems, any classifier that can potentially outrun neural
networks is worth considering. The second reason is
scalability: SVMs are relatively insensitive to the number of
data points and the classification complexity does not depend
on the dimensionality of the feature space [14], so they can
potentially learn a larger set of patterns and be able to scale
better than neural networks. Once the data is classified into
two classes, a suitable optimizing algorithm can be used if
necessary for further feature identification, depending on the
application [14].

B. The development of SVM IDS

The data is first partitioned into two classes: normal and
attack, where attack represents a collection of 22 different
attacks belonging to the four classes described in section 3.1.
The objective is to separate normal (1) and intrusive (-1)
patterns.

1) Training: The SVMs are trained with normal and
intrusive data. Our processed data consists of 14292 data
points: 7312 for training, 6980 for testing. Each point is
located in the n-dimensional space, with each dimension
corresponding to a feature of the data point. We used a
training set of 7312 data points with 41 features [16]. Data
points contain actual attacks and normal usage patterns. Data
points are used for training using the RBF (radial bias
function) kernel option; an important point of the kernel
function is that it defines the feature space in which the
training set examples will be classified [13].

During the training process the default regularization
parameter is set to c = 1000, with optimization done for 2733
iterations. During training only 6 data points from the 7312
training set are misclassified. A difference of 0.00072 was
achieved with the CPU run time of 17.77 seconds. The
number of support vectors used in the training process were
204, including 29 at the upper bound. Linear loss during the
process was 17.78295. The normalization of the weight

vector (w) during the training process is 126.10847;
normalization of the longest example vector (x) is 1.0000.
The number of kernel evaluations is 3 148450. The estimated
VC-dimension [12] of the classifier is less than or equal to
31807.69124.

2) Testing: We apply SVMs to a set of intrusion data as
described in Section 3 above. In our case we use the SVMs
to differentiate intrusions and normal activities. The testing
set, consisting of 6980 data points with 41 features, received
99.50% accuracy, with a total runtime of 1.63 sec. The
following graph shows the results.

SVM detection

I i

Fig. 1. SVMs results on KDD intrusion detection (outputs 1 denote 1 or
normal; outputs 2 denote -1 or attack)

V. The Neural Network Intrusion Detection System

The neural network intrusion detection system consists of
three phases:

* Using automated parsers to process the raw TCPAP
dump data in to machine-readable form.

* Training: neural network is trained on different types
of attacks and normal data. The input has 41 features
and the output assumes one of two values: intrusion
(22 different attack types), and normal data.

data.
* Testing: performed on the test set containing 6980

A. Experiments Using Neural Networks

Multi-layer, feed-forward networks are used. The scaled
conjugate gradient descent algorithm, available fiom the
MATLAB package, is used for training.

Our data consists of the same set of 14292 data points. The
set of 7312 training data is divided in to two classes: normal
and attack, where the attack is a collection of 22 different
types of instances that belong to the four classes described in
section 3, and the other is the normal data.

0-7803-7278-6/02/$10.00 02002 IEEE 1705

In the study we use three different feed-forward neural
networks with the following architectures:

Network A: Clayer, 4 1-20-20-20- 1.
Network B: 3-layer, 4 1-40-40- 1.
Network C: 3-layer, 41-25-20-1.

We use an initial training set of 7312 normalized input-
output pairs consisting attack pattems, and normal user
pattems.

I) Training Neural Networks: The training of the neural
networks was conducted using feed forward back propagation
algorithm using scaled conjugate gradient decent or SCG for
learning. The network was set to train until the desired mean
square error of 0.001 was met. During the training process the
goal was met at 394 epochs with a performance of
0.0009962988, Fig 2 shows the training process. The purpose
of having multiple networks is to find a suitable
architecture that can detect at a faster speed with low error
rate, minimizing false positives and false negatives. Out of all
the networks architectures used, network B performs the best
detection with 99.25% accuracy.

Figure 2 below demonstrates extremely good results of the
training of network B that converges in 394 epochs, while
other methods we tried (Gradient Descent with Adaptive
Linear Back Propagation and Gradient Descent with
Momentum and Adaptive Linear Back Propagation) took
longer.

Fig. 2. Neural network haining on KDD intrusion detection data-subset

2) Testing the Neural Network: The testing set, as before,
consisting of 6980 data points with 41 features. We have
three different feed-forward, multi-layer neural network
architectures. The following figure shows the results of three
different architectures: Network A performed with an
accuracy of 99.05%; network B achieved an accuracy of
99.25%; network C performed with an accuracy of 99%.

I NN detection

1 2.5 I I

m

2
2 1.5

G I

O5 0 5
- - b " ~ ~ ~ ~ ~ ~ g

Data points

+ NN [41.40,40,1]

-&- NN [41,25,20,1] -.X- Actual
+ NN [41,20,20,20.1]

Fig. 3. Neural network testing on KDD intrusion detection

VI. Comparison of SVMs and Neural Networks

Figure 4 below shows a comparison of the results of (the
best performing) neural network and support vector machines
on the KDD data subset selected for testing. Due to the large
size of the testing set, only thirty data points are shown here.
As can be seen, the SVM IDS has a slightly higher rate of
making the correct detection.

Comparison of NN's and SVM's

I + NN prediction + SVM prediction -b- Actual I

Fig. 4. Neural network and SVMs testing on two classes attackhormal data

VII. Conclusion

We have constructed intrusion detection systems using
neural networks and support vector machines, and tested their
performance on a set of benchmark DARPA data. It is
observed that both the neural networks and SVMs deliver
highly accurate results (greater than 99% accuracy on testing
set) and show compatible level of performance. The training
time for SVMs is significantly shorter (17.77 sec vs. 18 min),
an advantage that becomes rather important in situations
where retraining needs to be done quickly (e.g., when new
attack pattems are discovered). The running time of SVMs is
also notably shorter. On the other hand, SVMs can only make

O-7803-7278-6/02/$10.00 02002 IEEE 1706

binary classifications, which is a severe disadvantage where
the intrusion detection system requires multiple-class
identifications (e.g., all 22 different types of attacks need to
be differentiated).

Statistical learning techniques are being used more
extensively in recent intrusion detection systems, owing to
their adaptability and their generalization capability regarding
new attack signatures that would need to be ‘learned’
quickly? once discovered? by an IDS. Whether to use SVMs
or neural networks in implementing an intrusion detector
depends on the particular type of intrusion (anomaly or
misuse) that is under watch, as well as other security policy
requirements. SVMs have great potential to be used in place
of neural networks due to its scalability (large data sets and
large number of features in patterns can easily overwhelm
neural networks) and faster training and running time. On the
other hand, neural networks have already proven to be usehl
in many IDSs, and are especially suited for multi-category
classifications.

VIII. Acknowledgements

Partial support for this research received from ICASA
(Institute for Complex Additive Systems Analysis, a division
of New Mexico Tech) is gratefully acknowledged. The
second author also acknowledges her partial support received
from Sandia National Laboratories under the Rio Grande
Educational Initiative. We would also like to acknowledge
many insightful conversations with Dr. Jean-Louis Lassez,
David Duggan, and Bob Hutchinson that contributed greatly
to our work.

IX. References

[l] Ryan J, Lin M-J, Miikkulainen R (1998) Intrusion
Detection with Neural Networks. Advances in Neural
Information Processing Systems 10, Cambridge, MA:
MIT Press.

[2] Kumar S, Spafford EH (1994) An Application of
Pattern Matching in Intrusion Detection. Technical
Report CSD-TR-94-013. Purdue University.

[3] Luo J, Bridges SM (2000) Mining Fuzzy Association
Rules and Fuzzy Frequency Episodes for Intrusion
Detection. International Journal of Intelligent Systems,
John Wiley & Sons, pp 15:687-703.

[4] Demuth H, Beale M (2000) Neural Network Toolbox
User’s Guide. Mathworks, Inc. Natick, MA .

[5] Sung AH (1998) Ranking Importance Of Input
Parameters Of Neural Networks. Expert Systems with
Applications, pp 15:405-411.

[6] Cramer M, et. al. (1995) New Methods of Intrusion
Detection using Control-Loop Measurement.
Proceedings of the Technology in Information
Security Conference (TISC) ’95. pp 1-10.

0-7803-7278-6/02/$10.00 G2002 IEEE 1707

[7] Debar H, Becke M, Siboni D (1992) A Neural
Network Component for an Intrusion Detection
System. Proceedings of the IEEE Computer Society
Symposium on Research in Security and Privacy.

[SI Debar H, Dorizzi B (1992) An Application of a
Recurrent Network to an Intrusion Detection System.
Proceedings of the International Joint Conference on
Neural Networks. pp 78-483.

[9] Denning D (FEB 1987) An Intrusion-Detection
Model. IEEE Transactions on Software Engineering,

[lo] Ghosh AK. (1999). Learning Program Behavior
Profiles for Intrusion Detection. USENIX.

[113 Cannady J. (1998) Artificial Neural Networks for
Misuse Detection. National Information Systems
Security Conference.

[12] Vladimir VN (1995) The Nature of Statistical
Learning Theory. Springer, Berlin Heidelberg New
York.

[131 Joachims T (2000) SVMlight is an implementation of
Support Vector Machines (SVMs) in C.
http://ais.gmd.de/-thorstedsvm-light/ . University of
Dortmund. Collaborative Research Center on
‘Complexity Reduction in Multivariate Data’
(SFB475).

[14] Joachims T (1998) Making Large-scale SVM
Learning Practical. LS8-Report, University of
Dortmund, LS VIII-Report.

[151 Joachims T (2000) Estimating the Generalization
Performance of a SVM Efficiently. Proceedings of the
International Conference on Machine Learning,
Morgan Kaufman.

Vol. SE-13, NO 2..

[161 http://kdd.ics.uci.edu/databases/kddcup99/task.html.

http://ais.gmd.de/-thorstedsvm-light
http://kdd.ics.uci.edu/databases/kddcup99/task.html

