
Software 
Development 

Challenges

SDC-

Hard to develop?

Why is it hard to develop software within budget and 

time?

Quality of code

When you say it’s done, what do you mean?

How good is the code you write?

2



SDC-

Risk in development
You write code based on what you know

When was the last time you had to change the design?

What happened after you changed it?

Does your code turn into a loose cannon towards the 

deadline?
3

SDC-

Efforts to minimize Risk

Change in inevitable

You don’t want to wonder what the effect of a change 

is

Feedback is critical

Frequent feedback is necessary

You want to know right away if you broke the code, 

isn’t it?

4



SDC-

Software Development

What’s software development like?

We often get compared to other human endeavors

Let’s study some of those

Bridge Construction

Medicine

Flying

5

SDC-

Bridge Construction

Safety Concerns

Strong metrics and standards

Often construction and design are separated

Innovation and construction are separated

6



SDC-

Medicine
“Health was thought to be restored by 
purging, starving, vomiting or 
bloodletting”

Both surgeons and barbers were involved

Rate of infection was high before Joseph 
Lister introduced Germ theory

As human, we learn from our mistakes

We reject ideas

We take time

We learn eventually 7

SDC-

Flying

400BC Chinese learned to fly a kite

Lead to aspirations for human to fly

Several inventions and innovations followed for 

centuries

Flying is more than putting wings on a machine

We can’t copy - we’ve to figure out what works

8



SDC-

Software Development

Still a nascent field

Too many variables

Innovation is not separate from construction

Separating design and coding phase is not realistic

Capers Jones studies large software projects

Only 10% of projects were successful

We can’t afford to continue at this rate

9

SDC-

Engineering Rigor
In Engineering Construction is expensive, Design is 

relatively Cheap

In Software Development Construction is Cheap (it’s 

the conversion of code into executables)

Design (which involves modeling and coding) is 

expensive

Can’t we quickly test our design (since construction is 

cheap)?

Testing is the Engineering Rigor in Software 

Development
10



SDC-

Software Development 
Methodologies and Practices

We’ve tried several approaches

Waterfall, Fountain, Spiral, Iterative and Incremental, 

Agile,...

11

SDC-

Waterfall Method
Requirements

Analysis

Design

Implementation &Testing

Integration

Maintenance

12



SDC-

Waterfall—pros and cons

Simple (simplistic)

Easy to plan

Hard to deliver

Assumes stages carried out to completion

Most practiced

High rate of failure

13

SDC-

What’s Agility?

What’s Agility?

It’s being agile

OK, what’s Agile?

“marked by the ready ability to move with quick 

easy grace”

“having a quick resourceful and adaptive character”

14



SDC-

Why Agile?

Software Development is

risky

change is the only constant

we constantly have to fight entropy

always in a state of flux

Conventional approach has not solved our problems

15

SDC-

From Agile and Iterative Development: A Managers 

Guide by Craig Larman

Reliability on Estimates

16



SDC-

Change in Requirements

17

From Agile and Iterative Development: A Managers 

Guide by Craig Larman

SDC-

Actual Use of Requested Features

Relevance

18

From Agile and Iterative Development: A Managers 

Guide by Craig Larman



SDC-

Impact

19

From Agile and Iterative Development: A Managers 

Guide by Craig Larman

SDC-

Factors

20

From Agile and Iterative Development: A Managers 

Guide by Craig Larman



SDC-

Duration

21

From Agile and Iterative Development: A Managers 

Guide by Craig Larman

SDC-

Meeting Requirements

From "Practices of an Agile Developer" 

by Venkat Subramaniam and Andy Hunt
22



SDC-

Project & Schedule

Start Realization Deadline Delivery

Scope

Time

Quality

23

SDC-

Adaptive Planning

“No plan survives contact with the enemy” - 

Helmuth von Moltke

It is more important to succeed than stick with a 

predefined plan

Allow your management to dictate only two out of 

three - quality, time, scope

What if they insist you give them all three?

They get failure instead

24



SDC-

How to be agile?

Agility is all about action

How can you be evolutionary?

You need to build what’s relevant

You need to make change affordable

How can you do that?

25

SDC-

Feedback and 
Communication

Actively listen and seek feedback

Feedback comes in two forms

Is your code meeting and continuing to meet your 

(programmers’) expectations?

Unit and integration tests

Is it relevant and solving customers’ problems?

Frequent Demo and Exercise

26



SDC-

Continuous, not Episodic

27
From "Practices of an Agile Developer" 

by Venkat Subramaniam and Andy Hunt


