
7. Operator Overloading:
Issues & Mechanism

Operator Overloading
• Ease of Use & Readability

Rules:
• Overload only existing Operators
• Can’t change existing Operator definitions

– 5 + 2 is 7, period!
• Operator precedence rules apply - can’t change

Operator Overloading is merely a function - a
special functions though

Examples using Complex class
class Complex {

double rep, imp;
public:

Complex (double rp=0, double ip=0) { set (rp, ip); }
void set (double rp, double ip)
{ rep = rp; imp = ip; }
void get(double& rp, double& ip) const
{ rp = rep; ip = imp; }
...

};

Overloading the + Operator - as
member function

Adding two Complex numbers:
C = A + B;

// Operator+ as a member function of Complex class
Complex Complex::operator+(const Complex& b) const
{

Complex temp;
temp.rep = rep + b.rep;
temp.imp = imp + b.imp;
return temp;

}

Overloading the + Operator - as global
function

// Operator+ as a non-member function of Complex class
Complex operator+(const Complex& a, const Complex& b)
{

double realpartofa, realpartofb, impartofa, impartofb;

a.get(realpartofa, impartofa);
b.get(realpartofb, impartofb);

Complex temp;
temp.set(realpartofa+realpartofb, impartofa + impartofb);
return temp;

}

Mechanism involved in resolving
a call to Operator Overloading

C = A + B;
is equivalent to one of the following

• C = A.operator+(B);
– The operator + is associated with the left operand object.
– Expects to see a member function operator+ in class Complex which

takes an object of type Complex as argument

• C = operator+(A, B);
– The operator + is associated with neither object.
– Expects to see a global function operator+ which takes two objects

of type Complex as argument.

Exercise on operator+

• What are the possible ways to provide the following
feature:

A is a Complex number.
C = A + 2.1; // Add 2.1 (double) to the

// real part of A.

Exercise on operator+ : Solution
• Provide

Complex operator+(double val) const;
as a member function of Complex

• Provide
Complex operator+(const Complex& a, double val);

as a global function
• No need for any function if one of the following exists:
• Complex Complex::operator+(const Complex&) const;
• Complex operator+(const Complex&, const Complex&);
Since

Complex (double=0, double=0); can convert 2.1 to a
Complex object

Another Exercise on operator+

• What are the possible ways to provide the following
feature:

A is a Complex number.
C = 2.1 + A; // Add 2.1 (double) to the

// real part of A.

Another Exercise on operator+ :
Solution

• Recollect that 2.1 + A is equivalent to one of the
following:
– 2.1.operator+(A);
– operator+(2.1, A);

The first one is not possible since you can’t redefine
+ on double - built in datatype.

Only option (not considering type conversion): provide
Complex operator+(double val, const Complex& a);

Writing the operator+ for 2.1 + A
Complex operator+(double val, const Complex& A)
{

double realpartofa, impartofa;

a.get(realpartofa, impartofa); // Function call Overhead

Complex temp;
temp.set(val + realpartofa, impartofa); // Function call Overhead
return temp;

}

Eliminating Overhead - that is
what friends are for ?!

class Complex
{ ...

friend Complex operator+(double val, const Complex& a);
}

Complex operator+(double val, const Complex& A)
{

Complex temp;
temp.rep = val + a.rep; // Direct access to A’s data, and temp’s
temp.imp = a.imp; // Direct access to A’s data, and temp’s
return temp;

}

Should I write a member function or
a global friend function?

• Pure object-oriented languages allow only member
functions. In C++ you may have a choice

• Some functions should be members
– operator=

• Member do not introduce global names - use these
in absence of other reasons

• If implicit type conversion is desired, for all
operands of an operation, use global functions.

• If an operation modifies an operand, rather than
merely returning a result, use member.

Cascading Operators

• D = A + B + C;
– Where A, B and C are Complex

• D = A + B + 2.1;
• D = 2.1 + A + 3.2;

All that it takes is a proper return type in the
operator overloaded function.

Lab Work: Details provided on-line.

