
4. Objects:Identity, State & Behavior

Object Identity
Distinguishes object by their inherent existence & not

by descriptive properties that they may have.

Identity - an Handle to the Object

C++ - Memory Address is an Object Identifier

myWatch
seconds = 0

watch2
seconds = 32

watch1
seconds = 32

“this” pointer
Each object has a variable called “this”. “this”

is a pointer. It holds the address (Identity) of
the Object.

watch1.this “is equal to” &watch1
watch2.this “is equal to” &watch2
string1.this “is equal to” &string1

“this” helps “self-reference” & to pass “self”
to other objects.

Behavior & State of an Object
• Methods take an Object from one State to Another
• A method may be called only when an Object is in a

selected set of states.
– Example: FileHandler:

• Open may be called only if state is not open
• Close may be called only if the state is open

• Conditions: Pre-Conditions & Post-Conditions
– Pre-Condition (Advertised Requirements)

• Must be satisfied for proper/guaranteed execution of function.
– Post-Condition (Advertised Promises)

• Guaranteed State of the Object upon completion of function

Behavior & State of an Object...
Example:
class Stack {

...
push(Item& objC);

// Requirement: Stack not full.
// Promise: size = size +1; pop() == objC.

Item* pop();
// Requirement: Stack not empty
// Promise: size = size - 1

};
Some OOPLs like Eiffel Support pre/post Conditions

No Direct C++ Support!
• Specified through Comments
• Enforced through Exception Handling

const functions
• Within a const function - no modification to object

members allowed

• What if you want to change a member (that does not
really represent state of an object)
– Example: keeping track of number of reads to an object

class Record {...
int readCount; …
String getRecordId() const
{…
readCount = readCount + 1; // Error. Not allowed

}
};

castaway and mutable
• casting away the pointers - bad practise
class Record {...

int readCount; …
String getRecordId() const {…

((Record*)(this))->readCount = readCount + 1;
//Getting a non const pointer from this

}
};

• mutable key word - safe and portable
class Record {...

mutable int readCount; …
String getRecordId() const
{…

readCount = readCount + 1; // OK since readCount is mutable
}

};

Class Members & Methods
Common to & Shared by All Objects.

Class Members (Variables)
• Represents a concept based on the abstraction
• Shared by all Objects of a Class

Class Methods (functions)
• Works on the general concept rather than specific

Object
• May be based on the class Members

Example of a Static Member
Count of Number of Objects of a Class

class Bacteria {
static unsigned long count;
...

public:
Bacteria() { count = count + 1; ... }
~Bacteria() { count = count - 1; ... }
...

};

unsigned long Bacteria::count = 0;

Example of a Static Method
A method in class Bacteria ...
static unsigned long getCount() { return count; }

Usage:
Bacteria b1;
b1.getCount(); // Will return 1 Static Method
Bacteria b2; called on
b1.getCount(); // Will return 2 Objects.
b2.getCount(); // Will return 2

Bacteria::getCount(); // Will return 2

Another Example of Static Method
class DBMgr {

static DBMgr* themgr;
DBMgr() { } // No way to create a DBMgr outside of this Class!!

public:
static DBMgr* getDBMgr() // Only way to create a DBMgr. Controlled.
{

if (themgr == 0)
themgr = new DBMgr;

return themgr;
}

};
DBMgr* DBMgr::themgr = 0;
Usage:

DBMgr* dbmgrptr = DBMgr::getDBMgr(); // Created if one does not exist.
Singleton Pattern

Modules and Namespaces

• Large project has several modules of code

• Modularizing the system makes it more
understandable and maintainable

• In UML modules are called Components

• C++ implements packages using namespaces

Namespaces in C++
namespace Accessories {

class Wheel {}; // belongs to the Accessories
class Mirror{}; // belongs to the Accessories

};
namespace CarModule {

class Engine {}; // belongs to the CarModule
class Mirror{};// belongs to the CarModule
class Car {

Engine* pEngine; // No scope resolution needed
Accessories::Wheel* pWheel[4]; // Need resolution
Mirror* pRearView; // Mirror that belongs to CarModule
Accessories::Mirror* pSideMirror[2]; // Mirror belongs to Accessories

public: …
void drive();

};
};
void CarModule::Car::drive()
{// drive function's code
}

namespaces : mechanism for logical grouping. Has scope

Using Declaration
• Convenience to avoid redundant resolution
• Local synonym for entity in another namespace

void maintainCar(CarModule::Car& car)
{

using CarModule::Engine;

Engine& theEngine = car.getEngine();
//Engine is a synonym for CarModule::Engine

…
CarModule::Mirror& theMirror= car.getRearViewMirror();

}

Using Directives
• Namespace directives may be used for convenience
void maintainCar(CarModule::Car& car)
{

using namespace CarModule;

Engine& theEngine = car.getEngine();
//Engine is a synonym for CarModule::Engine

//...

Mirror& theMirror= car.getRearViewMirror();
}

Namespace Clashing
• Two or more namespaces have same class, function, etc.
void maintainCar(CarModule::Car& car)
{

using namespace Accessories;
using namespace CarModule;
Engine& theEngine = car.getEngine();
//...
Mirror& theMirror= car.getRearViewMirror();

}

• Use explicit resolution
void maintainCar(CarModule::Car& car)
{

using namespace Accessories;
using namespace CarModule;
Engine& theEngine = car.getEngine();
//...
CarModule::Mirror& theMirror= car.getRearViewMirror();

}

error C2872: 'Mirror' : ambiguous symbol

Lab Work: Details provided on-line.

