4. Objects:ldentity, State & Behavior

Object Identity

Distinguishes object by their inherent existence & not
by descriptive properties that they may have.

watchl myWatch
seconds = 32 seconds =0
watch?2
seconds = 32

Identity - an Handle to the Object

C++ - Memory Address is an Object Identifier

“this” pointer

Each object has a variable called “this”. “this”
IS a pointer. It holds the address (Identity) of
the Object.

watchl.this “is equal to” &watchl
watch2.this “is equal to” &watch2

stringl.this “is equal to” &stringl

“this” helps “self-reference” & to pass “self”

to other objects. l

Behavior & State of an Object

» Methods take an Object from one State to Another

* A method may be called only when an Object is in a
selected set of states.
— Example: FileHandler:

» Open may be called only if state is not open
* Close may be called only if the state is open

» Conditions: Pre-Conditions & Post-Conditions
— Pre-Condition (Advertised Requirements)
» Must be satisfied for proper/guaranteed execution of function.

— Post-Condition (Advertised Promises)
» Guaranteed State of the Object upon completion of function

Behavior & State of an Object...

Example:
class Stack {

push(ltem& objC);
/I Requirement: Stack not full.
/I Promise: size = size +1; pop() == objC.

Item* pop();
/l Requirement: Stack not empty
I/ Promise: size = size - 1

Some OOPLs like Eiffel Support pre/post Conditions
No Direct C++ Support!
 Specified through Comments
» Enforced through Exception Handling

const functions

 Within a const function - no modification to object
members allowed

» What if you want to change a member (that does not
really represent state of an object)

— Example: keeping track of number of reads to an object
class Record {...
int readCount; ...
String getRecordld() const
{...
readCount = readCount + 1; // Error. Not allowed
}
h

castaway and mutable

* casting away the pointers - bad practise

class Record {...

int readCount; ...

String getRecordld() const {...
((Record*)(this))->readCount = readCount + 1;

¥

}

//Getting a non const pointer from this

» mutable key word - safe and portable
class Record {...

mutable int readCount; ...

String getRecordld() const

{...

readCount = readCount + 1; // OK since readCount is mutable

¥

}

)¢

Class Members & Methods
Common to & Shared by All Objects.

Class Members (Variables)

Represents a concept based on the abstraction

Shared by all Objects of a Class

Class Methods (functions)

Works on the general concept rather than specific

Object
May be based on the class Members

Example of a Static Member

Count of Number of Objects of a Class

class Bacteria {
static unsigned long count;

public:
Bacteria() { count=count +1; ... }
~Bacteria() { count =count-1; ... }

Y

unsigned long Bacteria::count = 0;

Example of a Static Method

A method in class Bacteria ...
static unsigned long getCount() { return count; }

Usage:
Bacteria b1;
b1.getCount(); /I Willreturn 1 | Static Method
Bacteria b2; | called on
b1.getCount(); Il Will return 2 i Objects.
b2.getCount(); /1 Will return 2

Bacteria::getCount(); /' Will return 2

)

Another Example of Static Method

class DBMgr {
static DBMgr* themgr;
DBMgr() { } // No way to create a DBMgr outside of this Class!!
public:
static DBMgr* getDBMgr() // Only way to create a DBMgr. Controlled.
{
if (themgr == 0)
themgr = new DBMgr;
return themgr;
}
3
DBMgr* DBMgr::themgr = 0;
Usage:
DBMgr* domgrptr = DBMgr::getDBMgr(); /Il Created if one does not exist.
Singleton Pattern

Modules and Namespaces

Large project has several modules of code

Modularizing the system makes it more
understandable and maintainable

In UML modules are called Components

C++ implements packages using namespaces

Namespaces in C++

namespace Accessories {
class Wheel {}; // belongs to the Accessories
class Mirror{}; // belongs to the Accessories
¥
namespace CarModule {
class Engine {}; // belongs to the CarModule
class Mirror{};// belongs to the CarModule
class Car {
Engine* pEngine; // No scope resolution needed
Accessories::Wheel* pWheel[4]; // Need resolution
Mirror* pRearView; // Mirror that belongs to CarModule
Accessories::Mirror* pSideMirror[2]; // Mirror belongs to Accessories
public:
void drive();
Y namespaces : mechanism for logical grouping. Has scope
3
void CarModule::Car::drive()

{// drive function's code
}

Using Declaration

e Convenience to avoid redundant resolution
 Local synonym for entity in another namespace

void maintainCar(CarModule::Car& car)

{

using CarModule::Engine;

Engine& theEngine = car.getEngine();
/[Engine is a synonym for CarModule::Engine

CarModule::Mirror& theMirror= car.getRearViewMirror();

¥

Using Directives

» Namespace directives may be used for convenience
void maintainCar(CarModule::Car& car)

{

using namespace CarModule;

Engine& theEngine = car.getEngine();
/[Engine is a synonym for CarModule::Engine

...

Mirror& theMirror= car.getRearViewMirror();

¥

Namespace Clashing

e Two or more namespaces have same class, function, etc.
void maintainCar(CarModule::Car& car)
{

using namespace Accessories;

using namespace CarModule;

Engine& theEngine = car.getEngine(); error C2872: "Mirror' : ambiguous symbol

...

Mirror& theMirror= car.getRearViewMirror();

}

 Use explicit resolution
void maintainCar(CarModule::Car& car)
{
using namespace Accessories;
using namespace CarModule;
Engine& theEngine = car.getEngine();
...
CarModule::Mirror& theMirror= car.getRearViewMirror();

Lab Work: Details provided on-line.

