6. Testing & Refactoring

Venkat Subramaniam TEST-1

How we create classes?

e We think about what a class must do
e We focus on its implementation

e We write fields

e We write methods

e We may write a few test cases to see if it
works

e We hand it off to users of our code

e We then wait for them to come back with
feedback (problems)

Venkat Subramaniam TEST-2




Test First Coding

e How about starting with a test case even
before we have any code for our class?

e How about first write test that fail
because the code to support it does not
exist?

e How about adding functionality to our
system by adding tests incrementally and
then adding code to make those tests
succeed?

Venkat Subramaniam TEST-3

Test First Coding Benefits

e It would
- completely revert the way we develop

- We think about how our class will be used
first

e Helps us develop better interfaces that are easier
to call and use

- Would change the way we perceive things
- Will have code that verifies operations

- Will increase robustness of code

- Will verify changes we make

- Will give us more confidence in our code

Venkat Subramaniam TEST-4




Test First Coding Benefits...

e Forces us to make our code testable

e Tests decouple the program from its
surroundings

e Serves as invaluable form of
documentation

- Shows others how to use our code

Venkat Subramaniam TEST-5

Test Isolation — Mock Objects

e How do we create a test when our
system may depend on
- A database to persist information

— A third party simulator to perform
calculations/functions

- A printer to print output
— A scanner or device to read input?

e We may implement out system with Mock
Objects

Venkat Subramaniam TEST-6




“Mock Objects
e A Mock Object

- Provides the expected functionality

- Isolates the code from details that may be
filled in later

- Speeds up development of test code

- Can be refined incrementally by replacing
with actual code

<<interface>>

Test Code > Ser}Fce
Mock
Service
Venkat Subramaniam TEST-7
Unit Testing

e Unit testing
—Is more of an act of design than verification

- Is more of an act of documentation than
verification

- Provides excellent feedback

Venkat Subramaniam TEST-8




Types of Tests
e White-box testing

- Knows and depends on internal structure of
modules being tested

- Unit Testing
¢ Drives the design
¢ Validates changes made
¢ Insufficient as verification tool however
e Black-box testing
- Does not know and depend on internal
structure of modules being tested

— Acceptance testing
e Written by customers, QA
e Focuses on functionality of the system

Venkat Subramaniam TEST-9

Acceptance Testing

e Manual testing is not the preferred way

e Need to find ways to automate this as
well

e Promotes separation of business logic
from UI

e May be written using scripts, XML, etc.

Venkat Subramaniam TEST-10




Continuous Integrration
e What good are the test cases 1t they are not

run
e How often should we run them?
e Every night at least

e How about once every hour?

e Or better still when ever code change is
checked in

e When code is checked in the code is compiled
automatically and all tests cases are executed
- If a test fails the team is alerted

- When test fails, nothing else important/high priority
¢ Fix the code to make the test succeed

e Or modify the test to fit the changes if appropriate
Venkat Subramaniam TEST-11

Tools for Testing
e A number of tools are available
e A number of them are open source as
well

e For Java and .NET
- JUnit/NUnit
e Automated Unit testing tool

- Ant/NAnt
e Automated build system

— Cruise control/Cruise Control .NET
e Continuous integration

Venkat Subramaniam TEST-12




A Test Driven Exercise

e Problem Statement

e Test code generation

e Coding and Design

e Testing and continuous integration

e Change

Venkat Subramaniam TEST-13

What is Refactoring?

e The Process of changing a software system in
such a way that it does not alter the external
behavior of the code yet improves its internal
structure

e Why fix what’s not broken?

- A software module
e Should function its expected functionality
- It exists for this
¢ It must be affordable to change
- It will have to change over time, so it better be cost effective
e Must be easier to understand

- Developers unfamiliar with it must be able to read and
understand it

Venkat Subramaniam TEST-14




A Refactoring Exercise

e Revisiting the code
e Improvements to be made
e Reasoning

e Benefits

Venkat Subramaniam

TEST-15




